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Endowing Devices with Human Dexterity

Prostheses Exoskeletons

PISA-IIT Softhand

UCB HART Lab APEX 
Gamma exoskeleton

Capio Upper Body Exoskeleton 
for Teleoperation, DFKI GmbH 
Robotics Innovation Center HRI, UCB HART

Human–Robot 
CollaborationTeleoperation

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.
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Modeling Software Shortcomings

[Delp et al. 2007]

[Damsgaard et al. 2006]

Humans are highly over-actuated, and existing modeling 
frameworks make significant assumptions about muscle force 
distribution.
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Gray’s Anatomy

Sycra, DeviantArt

geometric complexity, 
contact dynamics

morphological 
variation

Muscle Force–Deformation Mechanics: Complexities

Starting point: Can we correlate simple muscle deformation signals with output force?
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Correlation Analysis

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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Correlation Analysis
ELBOW ANGLE SUBJECT

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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System Identification: Two Challenges
1. Manual annotation is prohibitively time-

intensive and can’t be done in real time.

2. It’s still unclear what deformation signals 
we should use, and where we should 
collect them.
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A 
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T 
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)
AR

× O(1000)

Track muscle contours via Lucas–
Kanade optical flow.

Observe the entire muscle under multiple 
joint positions and loading conditions.
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Data Collection Setup: Ultrasound + Motion Capture

Using motion capture to track the ultrasound probe position, we can generate full 
3D scans of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP

[Hallock, Kato, Bajcsy, ICRA 2018]
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Preliminary Data Set
Model target: elbow flexors

Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric 

scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– FS: fully supported
– GC: gravity compensation only
– LF: light wrist weight (~225g)
– MF: medium wrist weight (~725g)
– HF: heavy wrist weight (~950g)

Ultrasound volumetric data collection, HART Lab 2017

[Hallock, Kato, Bajcsy, ICRA 2018]

biceps 
brachii

brachialis

brachioradialis
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Preliminary Results: Qualitative

30˚
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(“Fully Supported”)
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90˚
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[Hallock, Kato, Bajcsy, ICRA 2018]
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Data Set Release: OpenArm 1.0

[Hallock, Kato, Bajcsy, ICRA 2018]
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Data Collection: Challenges & Shortcomings

Using motion capture to track the ultrasound probe position, we can generate full 
3D scans of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP

PROHIBITIVELY time intensive

[Hallock, Kato, Bajcsy, ICRA 2018]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

CNN-based segmentation performs better 
than classical registration on the center of the 
muscle, where we focus our modeling 
analyses.OpenArm 2.0!

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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(Simplified) Biological Mechanism

How close is what we observe 
to the simplified model?
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Spatial Analysis: OpenArm 1.0
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Spatial Analysis: Statistical Shape Modeling

Biceps Cross-Section

No Force, Vary Angle 30˚ Angle, Vary Force

Shape First Shape Modes

mean shape

eigenvectors of covariance

weight 
vector

SHAPE DECOMPOSITION :

Ex
pl

ai
ne

d 
Va

ri
an

ce

Number of Principal Components

78% var. 59% var.
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Expanded Biological Mechanism
• Multi-muscle dynamics

– synergies
– contact forces

• Geometric complexity
– nonlinear, config-specific “line of action”
– pennation angle
– tendon/aponeurosis thickness

• Mechanical complexity
– fiber type (I or II)
– hysteresis
– concentric vs. eccentric contraction
– fatigue

• Neurological complexity
– motor unit distribution
– tetanic vs. subtetanic contraction
– feedback vs. feedforward control

BRAIN

SPINE

PNS

CHALLENGE: “One step forward, one step back”

The more closely we attempt to model biological 
mechanisms, the more values and parameters we must 

assume based on literature. 

GOAL

build up a principled suite of models that make varying 
trade-offs between collected data and literature values

in a quantifiable manner

(sidenote: this work can also help validate those literature values!)
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model

(Proposed) Suite of Models

Muscle 
Deformation

[measured]
[assumed]

Tendon Dynamics

+
Muscle Geometry

“model free” 
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+ multi-muscle 
dynamics

+ MTU 
dynamics

+ ellipsoidal 
kinematics

“black box” “white box”
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Preliminary AMG-Force Model

• Preliminary data show 
significant correlation of 
quantity with muscle output 
force

• Currently working to validate 
model and investigate its 
spatial/temporal resolution

[Harrison 2018]

AMG amplitude [# activated muscle fibers]

AMG frequency [mean fiber force]
muscle force

[Hallock, Bajcsy, EMBC 2018]
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Prototype Deformation-based Control

sEMG (biceps)

ultrasound 
(brachioradialis)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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optical flow)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Subjects can track “forcelike” 
trajectories (exerting pressure 
during isometric elbow flexion) 
via ultrasound-measured 
muscle thickness.

(points tracked via Lucas–Kanade
optical flow)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Prototype Deformation-based Control: Performance
sustained ramp step sine

(S
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[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)



101

Prototype Deformation-based Control: Performance
sustained ramp step sine
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[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Prototype Deformation-based Control: Preferences

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Roadmap

FUNDAMENTAL CHALLENGE: Insufficient Models
Current musculoskeletal modeling approaches don’t sufficiently capture human dynamics to ensure 
safety and capability.

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.

THESIS CONTRIBUTION: New Modeling Paradigms & Prototype Control
By directly measuring muscle movement (as deformation/vibration), we can build and use new 
classes of control-ready musculoskeletal models that represent human dynamics with greater fidelity.

VISION: Safe and Capable Systems for Assistance & Rehabilitation
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Device Control: Expanded Deformation Tracking

Points along the muscle 
fascia can be reliably 
tracked in real time via 
Lucas–Kanade optical 
flow-based methods.

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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Device Control: Robot Teleoperation
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Device Control: Baseline sEMG Control

+ +
–

position
(goniometer)

activation
(sEMG)

PID Controller



111

Device Control: Proposed Augmented Control
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Force–Activation Modeling: “Closing the Loop”
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Force–Activation Modeling: “Closing the Loop”

EEG, ECoG

nerve cuff 
electrodes

BRAIN

SPINE

PNS
(s)EMG

ultrasound / AMG

Measuring muscle output force directly 
would allow for improved interpretation of 
existing sensing modalities.
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Modeling Synergies: Cost Function Evaluation
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Measuring individual muscle forces 
allows for probing / validating current 
ID inference.
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Modeling Synergies: Novel Systems
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[e.g., OpenSIM, AnyBody]

Measuring individual muscle forces 
allows for probing / validating current 
ID inference models and developing FD 
measurement systems with reasonable 
behavior.
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JOINT HUMAN–ROBOT SYSTEM
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Addressing Pathology: “Closing the Loop”

Measuring muscle output force directly 
would allow for better understanding, 
diagnosis, and treatment of 
neuromuscular pathology.
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Roadmap

FUNDAMENTAL CHALLENGE: Insufficient Models
Current musculoskeletal modeling approaches don’t sufficiently capture human dynamics to ensure 
safety and capability.

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.

THESIS CONTRIBUTION: New Modeling Paradigms & Prototype Control
By directly measuring muscle movement (as deformation/vibration), we can build and use new 
classes of control-ready musculoskeletal models that represent human dynamics with greater fidelity.

VISION: Safe and Capable Systems for Assistance & Rehabilitation
Better musculoskeletal models will enable not only safe and capable human–robot systems, but 
enhanced understanding of neurological motor control and diagnosis and treatment of pathology.
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VISION: Safe and Capable Systems for Assistance & Rehabilitation
Better musculoskeletal models will enable not only safe and capable human–robot systems, but 
enhanced understanding of neurological motor control and diagnosis and treatment of pathology.

lhallock@eecs.berkeley.edu · eecs.berkeley.edu/~lhallock

Thanks to

and to . . . 



126



127



128

Jessica Gamble Leslie Goldstein



129



130

Jeffrey Zhang
Aaron Sy
Shivani Sharma
Nicole Peternel
Irene Kim
Daniel Ho
Ian McDonald
Sathvik Nair
Logan Howard
Yannan Tuo
Yoni Nozik
Nandita Iyer
David Wang
Sachiko Matsumoto
Sai Mandava

Thomas Li
Kireet Agrawal
Michelle He
Evan Shu
Jason Liu
Hayden Sheung
Prerana Kiran
Jaeyun Stella Seo
Chris Mitchell
Akash Velu
Amanda Schwartz
Bhavna Sud
Varun Bhatia
Eric Hu
Fayyaz Ahamed



131

the teaching teams — and students! — of EECS 106A and 127



132



133



135



136



137



138



139



140


	A systematic study of the muscle force–deformation relationship at the human elbow:�Toward physiology-aware assistive device control and noninvasive muscle force sensing
	Which hand would you prefer?
	Which hand would you prefer?
	Which hand would you prefer?
	Endowing Devices with Human Dexterity
	Roadmap
	Roadmap
	Roadmap
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	Modeling Software Shortcomings
	Modeling Software Shortcomings
	Modeling Software Shortcomings
	Toy Example: Joint-for-Joint Teleoperation
	Roadmap
	Roadmap
	Toy Example: Joint-for-Joint Teleoperation
	Toy Example: Joint-for-Joint Teleoperation
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	Muscle Force–Deformation Mechanics
	Muscle Force–Deformation Mechanics
	Muscle Force–Deformation Mechanics: Complexities
	Muscle Force–Deformation Mechanics: Complexities
	Muscle Force–Deformation Mechanics: Complexities
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis: Data Collection
	Correlation Analysis
	Correlation Analysis
	Correlation Analysis
	Correlation Analysis
	System Identification: Two Challenges
	System Identification: Two Challenges
	System Identification: Two Challenges
	System Identification: Two Challenges
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	Data Collection Setup: Ultrasound + Motion Capture
	Preliminary Data Set
	Preliminary Results: Qualitative
	Data Set Release: OpenArm 1.0
	Data Collection: Challenges & Shortcomings
	Automated Tissue Segmentation: U-Net
	Automated Tissue Segmentation: U-Net
	Automated Tissue Segmentation: U-Net
	Automated Tissue Segmentation: U-Net
	Automated Tissue Segmentation: U-Net
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	(Simplified) Biological Mechanism
	Spatial Analysis: OpenArm 1.0
	Spatial Analysis: OpenArm 1.0
	Spatial Analysis: OpenArm 1.0
	Spatial Analysis: OpenArm 1.0
	Spatial Analysis: Statistical Shape Modeling
	Expanded Biological Mechanism
	Expanded Biological Mechanism
	Expanded Biological Mechanism
	Expanded Biological Mechanism
	Expanded Biological Mechanism
	Expanded Biological Mechanism
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	(Proposed) Suite of Models
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	Preliminary AMG-Force Model
	GRADUATE WORK: Advances in MSK Sensing & Modeling
	GRADUATE WORK: Prototype Control
	Prototype Deformation-based Control
	Prototype Deformation-based Control
	Prototype Deformation-based Control
	Prototype Deformation-based Control: Performance
	Prototype Deformation-based Control: Performance
	Prototype Deformation-based Control: Preferences
	GRADUATE WORK: Prototype Control
	Roadmap
	Roadmap
	GRADUATE WORK: Prototype Control
	VISION: Advances in Assistive Device Control
	Device Control: Expanded Deformation Tracking
	Device Control: Robot Teleoperation
	Device Control: Baseline sEMG Control
	Device Control: Proposed Augmented Control
	VISION: Advances in Assistive Device Control
	VISION: Advances in Motor Control Science
	Force–Activation Modeling: “Closing the Loop”
	Force–Activation Modeling: “Closing the Loop”
	Modeling Synergies: State-of-the-Art
	Modeling Synergies: Cost Function Evaluation
	Modeling Synergies: Novel Systems
	VISION: Advances in Motor Science & Device Control
	VISION: Advanced Human–Robot Systems
	Addressing Pathology: “Closing the Loop”
	Roadmap
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140

