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Endowing Devices with Human Dexterity

Prostheses Exoskeletons

PISA-IIT Softhand

UCB HART Lab APEX 
Gamma exoskeleton

Capio Upper Body Exoskeleton 
for Teleoperation, DFKI GmbH 
Robotics Innovation Center HRI, UCB HART

Human–Robot 
CollaborationTeleoperation

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.
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Modeling Software Shortcomings

[Delp et al. 2007]

[Damsgaard et al. 2006]

Humans are highly over-actuated, and existing modeling 
frameworks make significant assumptions about muscle force 
distribution.
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Gray’s Anatomy

Sycra, DeviantArt

geometric complexity, 
contact dynamics

morphological 
variation

Muscle Force–Deformation Mechanics: Complexities

Starting point: Can we correlate simple muscle deformation signals with output force?
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Correlation Analysis

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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Correlation Analysis
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Correlation Analysis
ELBOW ANGLE SUBJECT

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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System Identification: Two Challenges
1. Manual annotation is prohibitively time-

intensive and can’t be done in real time.

2. It’s still unclear what deformation signals 
we should use, and where we should 
collect them.
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A 
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T 
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)
AR

× O(1000)

Track muscle contours via Lucas–
Kanade optical flow.

Observe the entire muscle under multiple 
joint positions and loading conditions.
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Data Collection Setup: Ultrasound + Motion Capture

Using motion capture to track the ultrasound probe position, we can generate full 
3D scans of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP

[Hallock, Kato, Bajcsy, ICRA 2018]
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Preliminary Data Set
Model target: elbow flexors

Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric 

scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– FS: fully supported
– GC: gravity compensation only
– LF: light wrist weight (~225g)
– MF: medium wrist weight (~725g)
– HF: heavy wrist weight (~950g)

Ultrasound volumetric data collection, HART Lab 2017

[Hallock, Kato, Bajcsy, ICRA 2018]

biceps 
brachii

brachialis

brachioradialis
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Preliminary Results: Qualitative

30˚
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(“Fully Supported”)

30˚
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(“Low Force”)
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60˚

90˚

HF
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[Hallock, Kato, Bajcsy, ICRA 2018]
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Data Set Release: OpenArm 1.0

[Hallock, Kato, Bajcsy, ICRA 2018]
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Data Collection: Challenges & Shortcomings

Using motion capture to track the ultrasound probe position, we can generate full 
3D scans of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP

PROHIBITIVELY time intensive

[Hallock, Kato, Bajcsy, ICRA 2018]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

CNN-based segmentation performs better 
than classical registration on the center of the 
muscle, where we focus our modeling 
analyses.OpenArm 2.0!

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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(Simplified) Biological Mechanism

How close is what we observe 
to the simplified model?
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Spatial Analysis: OpenArm 1.0
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Spatial Analysis: Statistical Shape Modeling

Biceps Cross-Section

No Force, Vary Angle 30˚ Angle, Vary Force

Shape First Shape Modes

mean shape

eigenvectors of covariance

weight 
vector

SHAPE DECOMPOSITION :

Ex
pl

ai
ne

d 
Va

ri
an

ce

Number of Principal Components

78% var. 59% var.
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Expanded Biological Mechanism
• Multi-muscle dynamics

– synergies
– contact forces

• Geometric complexity
– nonlinear, config-specific “line of action”
– pennation angle
– tendon/aponeurosis thickness

• Mechanical complexity
– fiber type (I or II)
– hysteresis
– concentric vs. eccentric contraction
– fatigue

• Neurological complexity
– motor unit distribution
– tetanic vs. subtetanic contraction
– feedback vs. feedforward control

BRAIN

SPINE

PNS

CHALLENGE: “One step forward, one step back”

The more closely we attempt to model biological 
mechanisms, the more values and parameters we must 

assume based on literature. 

GOAL

build up a principled suite of models that make varying 
trade-offs between collected data and literature values

in a quantifiable manner

(sidenote: this work can also help validate those literature values!)
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model

(Proposed) Suite of Models

Muscle 
Deformation

[measured]
[assumed]

Tendon Dynamics

+
Muscle Geometry

“model free” 
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+ multi-muscle 
dynamics

+ MTU 
dynamics

+ ellipsoidal 
kinematics

“black box” “white box”
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Preliminary AMG-Force Model

• Preliminary data show 
significant correlation of 
quantity with muscle output 
force

• Currently working to validate 
model and investigate its 
spatial/temporal resolution

[Harrison 2018]

AMG amplitude [# activated muscle fibers]

AMG frequency [mean fiber force]
muscle force

[Hallock, Bajcsy, EMBC 2018]
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Prototype Deformation-based Control

sEMG (biceps)

ultrasound 
(brachioradialis)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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optical flow)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Subjects can track “forcelike” 
trajectories (exerting pressure 
during isometric elbow flexion) 
via ultrasound-measured 
muscle thickness.

(points tracked via Lucas–Kanade
optical flow)

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Prototype Deformation-based Control: Performance
sustained ramp step sine

(S
ub
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[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Prototype Deformation-based Control: Performance
sustained ramp step sine
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[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Prototype Deformation-based Control: Preferences

[Hallock, Sud, Mitchell, Hu, Ahamed, Velu, Schwartz, Bajcsy, TNSRE 2021] (under review)
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Roadmap

FUNDAMENTAL CHALLENGE: Insufficient Models
Current musculoskeletal modeling approaches don’t sufficiently capture human dynamics to ensure 
safety and capability.

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.

THESIS CONTRIBUTION: New Modeling Paradigms & Prototype Control
By directly measuring muscle movement (as deformation/vibration), we can build and use new 
classes of control-ready musculoskeletal models that represent human dynamics with greater fidelity.

VISION: Safe and Capable Systems for Assistance & Rehabilitation
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Device Control: Expanded Deformation Tracking

Points along the muscle 
fascia can be reliably 
tracked in real time via 
Lucas–Kanade optical 
flow-based methods.

[Hallock, Velu, Schwartz, Bajcsy, BioRob 2020]
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Device Control: Robot Teleoperation
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Device Control: Baseline sEMG Control
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Force–Activation Modeling: “Closing the Loop”
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Force–Activation Modeling: “Closing the Loop”

EEG, ECoG

nerve cuff 
electrodes

BRAIN

SPINE

PNS
(s)EMG

ultrasound / AMG

Measuring muscle output force directly 
would allow for improved interpretation of 
existing sensing modalities.
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Modeling Synergies: Cost Function Evaluation
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Measuring individual muscle forces 
allows for probing / validating current 
ID inference.
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Modeling Synergies: Novel Systems
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[e.g., OpenSIM, AnyBody]

Measuring individual muscle forces 
allows for probing / validating current 
ID inference models and developing FD 
measurement systems with reasonable 
behavior.
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JOINT HUMAN–ROBOT SYSTEM
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Addressing Pathology: “Closing the Loop”

Measuring muscle output force directly 
would allow for better understanding, 
diagnosis, and treatment of 
neuromuscular pathology.
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Roadmap

FUNDAMENTAL CHALLENGE: Insufficient Models
Current musculoskeletal modeling approaches don’t sufficiently capture human dynamics to ensure 
safety and capability.

GOAL:
Build safe, capable assistive devices that grant the human user full control authority.

THESIS CONTRIBUTION: New Modeling Paradigms & Prototype Control
By directly measuring muscle movement (as deformation/vibration), we can build and use new 
classes of control-ready musculoskeletal models that represent human dynamics with greater fidelity.

VISION: Safe and Capable Systems for Assistance & Rehabilitation
Better musculoskeletal models will enable not only safe and capable human–robot systems, but 
enhanced understanding of neurological motor control and diagnosis and treatment of pathology.



124

VISION: Safe and Capable Systems for Assistance & Rehabilitation
Better musculoskeletal models will enable not only safe and capable human–robot systems, but 
enhanced understanding of neurological motor control and diagnosis and treatment of pathology.



125

VISION: Safe and Capable Systems for Assistance & Rehabilitation
Better musculoskeletal models will enable not only safe and capable human–robot systems, but 
enhanced understanding of neurological motor control and diagnosis and treatment of pathology.

lhallock@eecs.berkeley.edu · eecs.berkeley.edu/~lhallock
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