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Why measure individual muscle forces?
“Despite great scientific efforts, we have no accurate, non-invasive, and simple way of measuring 
[or predicting] individual muscle forces . . . during human movement. I believe [solving this problem] 
will catapult our understanding of animal movements and locomotion into new and exciting 
dimensions.”

—Walter Herzog, 2017
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Why measure individual muscle forces?
“Despite great scientific efforts, we have no accurate, non-invasive, and simple way of measuring 
[or predicting] individual muscle forces . . . during human movement. I believe [solving this problem] 
will catapult our understanding of animal movements and locomotion into new and exciting 
dimensions.”

—Walter Herzog, 2017
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Muscle Force Inference: State-of-the-Art Shortcomings
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Muscle Force Inference: State-of-the-Art Shortcomings

Contraction 
Dynamics

Neurological 
Activation

Muscle Output 
Force

via electro-
myography

(EMG)

EMG is:
- noisy
- surface-only (if non-invasive)
- sensitive to electrode placement
- aggregate
- based on neurological signals (not 

directly correlated with force output)
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Muscle Force Inference: Our Approach

Deformation Dynamics
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muscle force without considering the 
neurological feedback loop. (Until we want 
to explicitly study it!)
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Deformation is a highly localized mechanical 
signal, allowing for measurement of individual
muscle force without considering the 
neurological feedback loop. (Until we want 
to explicitly study it!)

Muscle Force Inference: Our Approach

Deformation Dynamics

Contraction 
Dynamics

via ultrasound

Neurological 
Activation

Muscle Deformation

via electro-
myography

(EMG)

CORE HYPOTHESIS

Individual muscle force can be inferred from muscle 
deformation, which can be detected via ultrasound.

This relationship can be measured and quantified because 
changes in muscle shape reflect changes in tendon length, 
and therefore tendon stiffness, the mechanism by which force is 

imparted to the skeleton.
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Roadmap
CORE OBJECTIVE

We seek to measure individual muscle forces in vivo via ultrasound based on shape 
changes under loading.
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Roadmap
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Muscle Force Inference: Our Approach

Deformation Dynamics

Contraction 
Dynamics

via ultrasound

Neurological 
Activation

Muscle Deformation
What should this model look 
like?

via electro-
myography

(EMG)
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(Simplified) Biological Mechanism

When muscles are activated by the nervous 
system, they contract, extending springlike
tendons, which impart force to the skeleton.

Muscles are isovolumetric, so decreases in 
muscle length result in increases in cross-
sectional area that should be visible in our 
data set.

BRAIN

SPINE

PNS
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Deformation Modeling Challenges
1. Observed deformation varies substantially with sensor location.

3D View

ActiveInactive

Active

Inactive

Force

Muscle Cross-Section (Brachioradialis)
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Deformation Modeling Challenges
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1. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.
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Deformation Modeling Challenges
1. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.

To build a model that can robustly infer muscle force, we need to observe the entire muscle under 
multiple (ideally, factorial) joint positions and loading conditions.

1A: Data Set ScopeT I II III A C
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Data Collection Setup: Ultrasound + Motion Capture

Using motion capture to track the ultrasound probe position, we can generate full 3D scans
of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP

[Hallock, Kato, Bajcsy, ICRA 2018]

1B: Data Collection ApparatusT I II III A C
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Preliminary Data Set
Model target: elbow flexors (biceps brachii, 
brachialis, brachioradialis)

Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– FS: fully supported
– GC: gravity compensation only
– LF: light wrist weight (~225g)
– MF: medium wrist weight (~725g)
– HF: heavy wrist weight (~950g)

Ultrasound volumetric data collection, HART Lab 2017

[Hallock, Kato, Bajcsy, ICRA 2018]
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Preliminary Results: Qualitative

30˚

60˚

90˚

FS
(“Fully Supported”)

30˚

60˚

90˚

LF
(“Low Force”)

30˚

60˚

90˚

HF
(“High Force”)

[Hallock, Kato, Bajcsy, ICRA 2018]
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Data Set Release: OpenArm 1.0

[Hallock, Kato, Bajcsy, ICRA 2018]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

1D: Automated Data Annotation

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

1D: Automated Data Annotation

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]

CNN-based segmentation performs better than 
classical registration on the center of the muscle, 
where we focus our modeling analyses.
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Automated Tissue Segmentation: U-Net

(2D) U-Net

[Ronneberger et al. 2015]

intensity map (2D slice) output segmentation (2D slice)

CNN-based segmentation performs better than 
classical registration on the center of the muscle, 
where we focus our modeling analyses.

1D: Automated Data Annotation

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: Preliminary Results
Ground Truth U-NET

same angle,
same force,

new subject
(Sub2, 30°, FS)

same angle,
new force,

same subject
(Sub1, 30°, P3)

U-NET+EA Multi-Subject U-NET+EARegistration

new angle,
same force,

same subject
(Sub1, 60°, FS)

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Roadmap

III Proof-of-Concept ApplicationsII Model Development & 
Validation

I Exploratory Data Set 
Generation

CORE OBJECTIVE
We seek to measure individual muscle forces in vivo via ultrasound based on shape 

changes under loading.

1I: Model Development & Validation

Alternate Modalities, Schedule, & Conclusions
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(Simplified) Biological Mechanism

How close is what we observe 
to the simplified model?

BRAIN

SPINE

PNS
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Exploratory Data Analysis: OpenArm 1.0
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1IA: Modeling Framework

[Hallock, Kato, Bajcsy, ICRA 2018]
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Exploratory Data Analysis: OpenArm 1.0
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Exploratory Data Analysis: OpenArm 1.0
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Exploratory Data Analysis: OpenArm 1.0
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Exploratory Data Analysis: Statistical Shape Modeling

Biceps Cross-Section

No Force, Vary Angle 30˚ Angle, Vary Force

Shape First Shape Modes

mean shape

eigenvectors of covariance

weight 
vector

SHAPE DECOMPOSITION :

Ex
pl

ai
ne

d 
Va

ri
an

ce

Number of Principal Components

78% var. 59% var.
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Expanded Biological Mechanism
• Multi-muscle dynamics

– synergies
– contact forces

BRAIN

SPINE

PNS
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Expanded Biological Mechanism
• Multi-muscle dynamics

– synergies
– contact forces

• Geometric complexity
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– tendon/aponeurosis thickness

• Mechanical complexity
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CHALLENGE: “One step forward, one step back”

The more closely we attempt to model biological mechanisms, the 
more values and parameters we must assume based on literature. 
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Expanded Biological Mechanism
• Multi-muscle dynamics

– synergies
– contact forces

• Geometric complexity
– nonlinear, config-specific “line of action”
– pennation angle
– tendon/aponeurosis thickness

• Mechanical complexity
– fiber type (I or II)
– hysteresis
– concentric vs. eccentric contraction
– fatigue

• Neurological complexity
– motor unit distribution
– tetanic vs. subtetanic contraction
– feedback vs. feedforward control

BRAIN

SPINE

PNS

CHALLENGE: “One step forward, one step back”

The more closely we attempt to model biological mechanisms, the 
more values and parameters we must assume based on literature. 

GOAL

build up a principled suite of models that make varying trade-
offs between collected data and literature values in a 

quantifiable manner

(sidenote: this work can also help validate those literature values!)
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(Proposed) Suite of Models

1IB: Model Development

“black box” “white box”

Musculoskeletal Dynamics
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Musculoskeletal Dynamics

(Proposed) Suite of Models

[measured]
[assumed]

1IB: Model Development

“black box” “white box”

Biceps Contraction Dynamics
Force Distribution Model

“model free” 
baseline

+ multi-muscle 
dynamics
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Musculoskeletal Dynamics

Force Distribution Model

(Proposed) Suite of Models

[measured]
[assumed]

1IB: Model Development

+
Muscle Geometry

“black box” “white box”

Biceps Contraction Dynamics

“model free” 
baseline

+ multi-muscle 
dynamics
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model

(Proposed) Suite of Models

Muscle 
Deformation

[measured]
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1IB: Model Development

Tendon Dynamics

+
Muscle Geometry

“black box” “white box”

“model free” 
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dynamics
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Force Distribution Model
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model

(Proposed) Suite of Models

Muscle 
Deformation

[measured]
[assumed]

1IB: Model Development

Tendon Dynamics

+
Muscle Geometry

“model free” 
baseline

+ multi-muscle 
dynamics

+ MTU 
dynamics

+ ellipsoidal 
kinematics

“black box” “white box”

T I II III A C
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Model Validation
Direct, Invasive Force Measurement Consistency Across Sensors

cine DENSE MRIAMG

“tapping tendons”

[Martin et al. 2018]

[Harrison 2017] [Zhong et al. 2008]

[Barnes & Pinder 1974]

[Sherif et al.1983]

[Hoffer et al. 1989]

[Salmons 1969]
[Yager 1972]

1IC: Model ValidationT I II III A C
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Roadmap

III Proof-of-Concept ApplicationsII Model Development & 
Validation

I Exploratory Data Set 
Generation

CORE OBJECTIVE
We seek to measure individual muscle forces in vivo via ultrasound based on shape 

changes under loading.

1II: Proof-of-Concept Applications

Alternate Modalities, Schedule, & Conclusions
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Preliminary Deformation Signal Tracking

[Schwartz, Velu]

Points along the muscle 
fascia can be reliably 
tracked in real time
via Lucas-Kanade
optical flow.

1II: Proof-of-Concept ApplicationsT I II III A C
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Real-Time Device Control: Robot Teleoperation

1IIA: Device Control

PD Controller
+

–
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Real-Time Device Control: Baseline sEMG Control

1IIA: Device Control

PD Controller
+ +

–
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Real-Time Device Control: Proposed Control

1IIA: Device Control

PD Controller
+ +

–
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Real-Time Device Control: Proposed Control

1IIA: Device Control

PD Controller
+ +

–

Proof-of-Concept 
Application: ball catching!

T I II III A C
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In Vivo Muscle Force Inference: State-of-the-Art

Joint Angles / 
Velocities

Joint 
Torques

Muscle Output 
Forces

INVERSE 
DYNAMICS

COST FUNCTION
(e.g., minimum total energy, 

sEMG matching)

[e.g., OpenSIM, AnyBody]
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Deformation-Enhanced In Vivo Muscle Force Inference

Joint Angles / 
Velocities

Joint 
Torques

Muscle Output 
Forces

INVERSE 
DYNAMICS

COST FUNCTION
(e.g., minimum total energy, 

sEMG matching)

[e.g., OpenSIM, AnyBody]
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Deformation-Enhanced In Vivo Muscle Force Inference

FORWARD 
DYNAMICS

Joint Angles / 
Velocities

Joint 
Torques

Muscle Output 
Forces

Muscle Output 
Forces

Joint Angles / 
Velocities

INVERSE 
DYNAMICS

COST FUNCTION
(e.g., minimum total energy, 

sEMG matching)

[e.g., OpenSIM, AnyBody]

Measuring individual muscle forces allows for 
probing / validating current ID inference 
models and developing FD measurement 
systems with reasonable behavior.

1IIB: Extant Framework EvaluationT I II III A C
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Future Directions: Closing the Loop

EEG, ECoG

nerve cuff 
electrodes

BRAIN

SPINE

PNS
(s)EMG
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Future Directions: Closing the Loop

Measuring muscle output force directly would 
allow for improved interpretation of 
existing sensing modalities, as well as 
better understanding, diagnosis, and 
treatment of neuromuscular pathology.

EEG, ECoG

nerve cuff 
electrodes

BRAIN

SPINE

PNS
(s)EMG

cerebral palsy

stroke
Parkinson’s

muscular 
dystrophy

SCI

ALS

1II: Proof-of-Concept ApplicationsT I II III A C
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Roadmap
CORE OBJECTIVE

We seek to measure individual muscle forces in vivo via ultrasound based on shape 
changes under loading.

III Proof-of-Concept ApplicationsII Model Development & 
Validation

I Exploratory Data Set 
Generation

Alternate Modalities, Schedule, & Conclusions

Alternate Modalities, Schedule, & ConclusionsT I II III A C



87

Muscle Force Inference: AMG

Deformation Dynamics Vibration Dynamics

Contraction 
Dynamics

via ultrasound via acoustic myography (AMG)

Neurological 
Activation

Muscle Deformation Muscle Vibration

via electro-
myography

(EMG)

Vibration (as measured 
via AMG) also serves as 
a mechanical signal of 
muscle force.

Alternate Modalities, Schedule, & Conclusions

Muscle Output 
Force

T I II III A C
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Preliminary AMG-Force Model

• Preliminary data show significant 
correlation of  …...quantity 
with muscle output force

• Currently working to validate 
model and investigate its 
spatial/temporal resolution

[Harrison ’18]

AMG amplitude [# activated muscle fibers]

AMG frequency [mean fiber force]
muscle force

[Hallock, Bajcsy, EMBC 2018]

Alternate Modalities, Schedule, & ConclusionsT I II III A C
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Roadmap: Recap
CORE OBJECTIVE

We seek to measure individual muscle forces in vivo via ultrasound based on shape 
changes under loading.

III Proof-of-Concept ApplicationsII Model Development & 
Validation

I Exploratory Data Set 
Generation

Alternate Modalities, Schedule, & Conclusions

Alternate Modalities, Schedule, & ConclusionsT I II III A C
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Roadmap: Recap of Planned Contributions
CORE OBJECTIVE

We seek to measure individual muscle forces in vivo via ultrasound based on shape 
changes under loading.

III Proof-of-Concept ApplicationsII Model Development & 
Validation

I Exploratory Data Set 
Generation

a suite of models resulting 
in the first in vivo non-

invasive individual muscle 
force measurement

a proof-of-concept control 
application demonstrating 
the utility of this technology

a first-of-its-kind muscle 
deformation data set, with 
accompanying processing and 

analysis code, useful to a 
variety of fields (biomechanics, 

animation, etc.)

Alternate Modalities, Schedule, & Conclusions

Alternate Modalities, Schedule, & ConclusionsT I II III A C
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