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Why model musculoskeletal dynamics?
There are many mechanically sophisticated, biomimetic devices on the market . . . 
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KEY IDEA

If we can measure the output force of each muscle, we 
should be able to control an external device of the same 

complexity.

CHALLENGE

How can a human user control many degrees of freedom?
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Muscle Force Inference: State-of-the-Art
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Muscle Force Inference: State-of-the-Art
Contraction 
Dynamics
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myography

(EMG)

EMG is:
- noisy
- sensitive to electrode placement
- aggregate
- based on neurological signals 

(neurological disorder  poor signal)
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Muscle Force Inference: Our Approach
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Muscle Force Inference: Our Approach

Deformation Dynamics Vibration Dynamics

Contraction 
Dynamics

via ultrasound via acoustic myography (AMG)

Neurological 
Activation

Muscle Output 
Force

Muscle Deformation Muscle Vibration

Both deformation and vibration 
are mechanical signals, 
allowing for measurement of 
muscle force without 
considering the neurological 
feedback loop. (Until we want 
to explicitly study it!)

via electro-
myography

(EMG)

Deformation 
signal is highly 
localized!
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Deformation Modeling Challenges
1. Observed deformation varies substantially with sensor location.
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Deformation Modeling Challenges
1. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.
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Deformation Modeling Challenges
1. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.

To build a model that can robustly infer muscle force, we need to observe the entire muscle under 
multiple (ideally, factorial) joint positions and loading conditions.
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Approach: Ultrasound + Motion Capture

Using motion capture to track the ultrasound probe position, we can generate full 3D scans
of the arm under static conditions.

Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit

Tissue Segmentation
in ITK-SNAP
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Approach: Data Selection
Model target: elbow flexors (biceps brachii, brachialis, brachioradialis)
Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– FS: fully supported
– GC: gravity compensation only
– LF: light wrist weight (~225g)
– MF: medium wrist weight (~725g)
– HF: heavy wrist weight (~950g)

Ultrasound volumetric data collection, HART Lab 2017



16

Preliminary Results: Qualitative
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Preliminary Results: Simplest Models
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Preliminary Results: Statistical Shape Modeling

Biceps Cross-Section
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Current / Future Work: Big Questions
• Translational: If we measure kinematic configuration using other sensors (e.g., motion capture), 

can we infer a clean relationship between force and deformation that can be used as a 
control signal?

• Basic: Can these muscle force measures be used to build better models of neuromuscular 
contraction dynamics and better interpret {EMG, fMRI, EEG, etc.} signals?
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Current / Future Work: Big Questions
• Translational: If we measure kinematic configuration using other sensors (e.g., motion capture), 

can we infer a clean relationship between force and deformation that can be used as a 
control signal?

• Basic: Can these muscle force measures be used to build better models of neuromuscular 
contraction dynamics and better interpret {EMG, fMRI, EEG, etc.} signals?

Download the full data set at 
hart.berkeley.edu/datasets

{lhallock, bajcsy} @ eecs.berkeley.edu
hart.berkeley.edu
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