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Why model musculoskeletal dynamics!?

Human dynamics modeling is essential for many
applications.

* understanding forces imperative in physical HRI

APEX Gamma exoskeleton,

* non-physiological models cannot sufficiently predict HART Lab 2016

dynamics

q_#
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Why model musculoskeletal dynamics!?

Human dynamics modeling is essential for many
applications.

* understanding forces imperative in physical HRI

* non-physiological models cannot sufficiently predict
dynamics

It’s also difficult.

* complex dynamical system

* morphological variation

* limited sensing (esp. non-invasive)

Gray’s Anatomy,
1858
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Objective

We seek to that

* have appropriate level of abstraction (as simple as possible while accommodating
dynamically- and medically-relevant pathologies)

* are trainable/customizable using non-invasive sensing (MR, ultrasound, EMG,AMG, etc.)

* can be used in assistive device control system using non-invasive, wearable sensing (EMG,
AMG, ultrasound)
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Approach

* Project 0:The Simplest Possible Dynamics Model

* Project |: Geometric Models

— A: Morphology Analysis via Multi-Subject MRI (Stanford-UCB collaboration)
— B:Muscle Deformation Analysis via Ultrasound

* Project 2: Stress-Strain/Elasticity Models
— A:Acoustic Myography (AMG)
— B:cine DENSE MRI

OVERVIEW 8



PROJECT 0

The Simplest Possible Dynamics Model:
Multi-Sensor “Minimal Modeling” of the Human Arm




Goal: Predictive Upper-Limb Model

* predicts contact forces / joint
torques of interest

e accommodates musculoskeletal
pathology

Dynamics
(contact forces, joint

— injury
torques)

— disease (e.g., MD)

e individualized

* computationally tractable
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Existing Human Dynamics Models

(Static)
Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG,AMG, motion

capture, ultrasound) Dynamics
(contact forces, joint
torques)
Morphological
Assumptions

(biomechanics tables,
literature values)

Contextual

Assumptions
(gait cycle, motion primitives)
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Our Objective

(Static)

Morphological Data
(MRI, ultrasound)
Real-Time Data
(sEMG,AMG, motion L

Dynamics
(contact forces, joint
torques)

capture, ultrasound)

P0:The Simplest Possible Dynamics Model 12



Starting Point: Simplified Model

assumed morphological
parameters
m, F07 Tu,Tl, lopt

normalized muscle

activation
q = a elbow torque
mas 7= g1(F)
= g2(m, Fin, Tin)
elbow angle
0

* single individual
* elbow joint (hinge)

* single aggregate “muscle
* static

:The Simplest Possible Dynamics Model |3



Starting Point: Simplified Model

assumed morphological
parameters
normalized muscle 1
activation p N
— MUSCLE MODEL elbow torque
T
elbow angle 5
\ S
* single individual
* elbow joint (hinge)
° . 14 ” _ T
single aggregate “muscle If we (@,7,0),can we B — [51 By 53] ?

* static
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Starting Point: Simplified Model

If we (a,T,0),can we B= |6 [o Bg]T?
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Starting Point: Simplified Model
If we (a,T,0),can we B= |06 B Bgf?

By examining many discrete coordinate pairs (a, 7, #), we can write the system dynamics as

_ll

Tin1 +TFin 1 — %mg sin 017 T1 E sin 01aq ﬁ sin 01, % sin 04ay [61
: = || = Foriry 5y
Tingn + T Finn — 3mgsin 0,7 Tn lé”t sin 0y, ay, i sin 0,,a, li sin fa,, [53
L "op o " |
L , L
T W B

which admits linear least-squares optimization

min || — WB||3

to allow the fitting of B from experimental data.
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Activation (a) Measures: sEMG and AMG

sEMG (surface electromyography) AMG (acoustic myography)
* sensitive, noisy * improved SNR
* aggregate * aggregate
* based on neurological signals * based on physiological
(neurological disorder = poor signal) signals

* well-explored * novel

* industry standard

P0:The Simplest Possible Dynamics Model



Sample Actlvatlon Data
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Activation (a) Measures: Ultrasound

Muscle Cross-Section

3D View
Inactive
40 - S
20 ) 5%

€
£ . >
-40 - h - 200 Q
50 150 . :
ﬁ"‘ " 100 Active
. 50
Y (mm) -50 0 X (mm)
80
60 :
540 Inactive : . Active
20—
0 | | ————
0 1 2 3 4 5 6 7 8
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Experimental Setup

~230 (a, 7, 0) data points

sEMG
* @ via single-channel (biceps)
— sEMG AMG
— AMG
— ultrasound
* 7 via F/T sensor (mounted to UR5 robot) ultrasound

0 calculated from images (|3 waypoints)

50% training, 50% testing (randomly assigned)

Data collection, HART Lab 2017

P0:The Simplest Possible Dynamics Model
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Preliminary Results: sSEMG vs. AMG

Using both sEMG and AMG:

* predicted force using fitted B is reasonable (~5-10%
mean error over test set)

P0:The Simplest Possible Dynamics Model 21



Preliminary Results: sEMG vs. AMG

Using both sEMG and AMG: o | | Theoretical |
= -~ \ decreasing a
o . . . T~ Josr - 1
* predicted force using fitted 5 is reasonable (~5-10% =
O losf
mean error over test set) =
<
* predicted force-length relation is biologically Y . W
reasonable but differs across sensors Loyt
— max force at reasonable location = [, accurate : .
. . . ,| Theoretical
— normalization unreasonable > F{ inaccurate o | seMGfit )
. L ~ °[ AMG-fit [
— more investigation into other parameters needed 2 st [
~ 3l |
R‘E 2t |I| |||

0 0.5 1.5 2

U/ lopt
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Preliminary Results: Ultrasound

WP | WP 5 WP 13
(25%) (69°) (117°%)
(extended) (flexed)
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Preliminary Results: Ultrasound

No Force Max Force

’ N
{ ERe
{ N«

P0:The Simplest Possible Dynamics Model 24



Refined Approach:“Sensor-Driven” Modeling

moving forward:

* use an abstraction for each sensing modality that generates reliable results, even at the
expense of detail (e.g., sEMG as binary signal)

* determine which parameters/signals are most critical to measure correctly, and focus on
those

* use optimization/control techniques to use signals effectively (e.g., hybrid systems)

* increase model complexity without overfitting

P0:The Simplest Possible Dynamics Model 26



Limitations

The obvious: The model is and is not obviously more useful than other
single-DoF rigid body models.
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Limitations

The obvious: The model is and is not obviously more useful than other
single-DoF rigid body models.

The less obvious:To effectively extend these models, we need a much more

* Option |:geometric models (MRI, ultrasound)
— no ready “wearable” signal sources
highly localized
— more computationally intensive?
* Option 2:stress-strain/elasticity models (AMG, cine DENSE)

AMG as “wearable” signal source

— less localized
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Limitations

The obvious: The model is and is not obviously more useful than other
single-DoF rigid body models.

The less obvious:To effectively extend these models, we need a much more

* Option |:geometric models (MRI, ultrasound)
— no ready “wearable” signal sources
highly localized
— more computationally intensive?
* Option 2:stress-strain/elasticity models (AMG, cine DENSE)

AMG as “wearable” signal source

— less localized

P0:The Simplest Possible Dynamics Model 29



PROJECT |

Geometric Models:
Muscle Morphology and Deformation Analysis




PROJECT I A (Stanford-UCB collaboration)

Morphology Analysis via Multi-Subject MRI

Pl: Geometric Models 31



Motivation

OpenSim

There exist frameworks for human dynamical modeling ...
* OpenSim / AnyBody
* task-specific models

* our own models

P I A: Morphology Analysis via Multi-Subject MRI



Motivation

OpenSim

There exist frameworks for human dynamical modeling ...
* OpenSim / AnyBody
* task-specific models

* our own models

... but there do not exist frameworks that tell us how good
these models are.
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Goal: Quantify Model Accuracy

We seek to examine

* the across subjects,
* existing frameworks’ , and
* the on dynamical model prediction accuracy

(specifically, for the human arm).

P 1 A: Morphology Analysis via Multi-Subject MRI 34



Dataset: Upper-Limb MRI Scans

* ~10 subjects, full arm (hand through torso)

° varyin
— age
— health
— height/weight

— gender

* 4 separate scans taken to improve contrast where
possible, then stitched together in post-processing

— hand, forearm, elbow (“bird cage” coil)
— shoulder (no additional coil)

P I A: Morphology Analysis via Multi-Subject MRI 35



Approach

* extract parameters of interest
— bone/muscle volumes
— bone/muscle length

— muscle-bone attachment points

Segmented muscle data,
Stanford 2016
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Approach

* extract parameters of interest
— bone/muscle volumes
— bone/muscle length

— muscle-bone attachment points

* compare parameters

— across subjects

Segmented muscle data,

— across perturbed subjects Stanford 2016

— with best canonical model approximation (e.g., OpenSim)
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Approach

* extract parameters of interest
— bone/muscle volumes
— bone/muscle length

— muscle-bone attachment points

* compare parameters

— across subjects

Segmented muscle data,
— across perturbed subjects Stanford 2016
— with best canonical model approximation (e.g., OpenSim)
* evaluate each parameter’s impact on predicted dynamics (contact forces, joint
torques) using Stanford’s SCL

B€I’k€1€y P | A: Morphology Analysis via Multi-Subject MRI 38
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Approach: Bone Segmentation

Arm bones of 4 subjects segmented using

« MSER (implemented in MATLAB) (small — e.g., hand — bones)

* active contours (built into itk-SNAP) (larger bones)

* manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)
* manual cleanup (required on ALL bones)

P I A: Morphology Analysis via Multi-Subject MRI 39



Approach: Bone Segmentation

Arm bones of 4 subjects segmented using

« MSER (implemented in MATLAB) (small — e.g., hand — bones)
* active contours (built into itk-SNAP) (larger bones)
* manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)} extensive manual

* manual cleanup (required on ALL bones) cleanup required!
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Approach: Muscle Segmentation

Muscle segmentation presents further challenges:

* manual segmentation prohibitively time-intensive (multiple months for single subject
by Stanford collaborators)

Segmented muscle data,
Stanford 2016

P I A: Morphology Analysis via Multi-Subject MRI 45



Approach: Muscle Segmentation

Muscle segmentation presents further challenges:
* manual segmentation prohibitively time-intensive

* poorly suited to generic blob/edge detection
— large inter- and intra-subject contrast variation
— muscle fascia hard to observe, even for humans

— artifacts (stitching, motion, etc.)

Stitched scan, subject | (M)

Berkeley P 1 A: Morphology Analysis via Multi-Subject MRl 46
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Approach: Muscle Segmentation

Muscle segmentation presents further challenges:
* manual segmentation prohibitively time-intensive
* poorly suited to generic blob/edge detection

* significant non-affine variation predicted across subjects

— joint angles (likely need to match segments and stick them back together)
— overall morphology

Stitched scan, subject | (M)

UNIVERSITY OF CALIFORNIA
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Approach: Muscle Segmentation

Muscle segmentation presents further challenges:
* manual segmentation prohibitively time-intensive
* poorly suited to generic blob/edge detection

* significant non-affine variation

- Instead of segmenting from scratch, map segmented muscles from one
subject to another!

P I A: Morphology Analysis via Multi-Subject MRI 48



Approach: Muscle Segmentation

Goal: Find best transformation f' : R — T

(segmented) reference subject target subject

R T

P 1 A: Morphology Analysis via Multi-Subject MRl 49



Approach: Muscle Segmentation

Goal: Find best transformation f' : R — T

(segmented) reference subject atlas target subject

RceR T
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Approach: Muscle Segmentation

Goal: Find best transformation f' : R — T

(segmented) reference subject atlas target subject
ReR T
- This is a canonical MRI registration problem (use same F'on raw scans and muscles), so we

can explore existing libraries!

P | A: Morphology Analysis via Multi-Subject MRI 51



Approach: Registration Pipeline (Elastix)

QA N
Most promising results thus far obtained via: EIaStX @

* intensity-based registration

* multi-resolution image pyramids: registered lower-resolution image initializes that
of next highest resolution

* weighted combination of transform types: lower-DOF transform results
initialize higher-DOF transform

translation + affine free-form deformation (FFD)
rotation (Euler) transformation (b-spline parameterized)

P 1 A: Morphology Analysis via Multi-Subject MRI 59
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192 of 305 zoom to fit
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Preliminary Results: Muscle Mapping (ground truth)

...we're working on it.
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Preliminary Results: Comparison

Preliminary bone segmentation
results show significant
morphological variation
across subjects that cannot be
modeled in existing frameworks.
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Preliminary Results: Comparison

A B

Estimate best fit with
point matching

n-points: 500

B Canonical Model Bone (radius)
| Subject-Specific Model Bone (radius)

Fig. 5. Model Scaling Errors. A. A canonical model’s radius bone
side-by-side with an MRI-based subject-specific model’s radius bone. The
subject-specific model is accurate to < 1mm, and considered to be ground
truth. B. We scaled the canonical model to the subject’s radius with an
affine transformation that optimized the distance between five hundred
corresponding points between the two bones. C. The scaled canonical model
was unable to match the geometry of the subject-specific model. Moreover,
affine fits can be expected to be substantially worse when ground truth is
unavailable.

MRI vs. canonical, Stanford 2016
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Preliminary Results: Simulation

A

S2 (muscles)

Stage 1 (bones)

MRI Scans (segmented
shoulder bones & muscles)

S3 (slicing)
S4 (one slice)

Fig. 3. Model Generation. A. MRI-based musculoskeletal models were
obtained by segmenting high-resolution anatomical scans, Exemplar sagittal ‘J
cross-sections for the shoulder are shown, matching the volumetric recon-
struction below. B. The model generation pipeline consists ol six stages,
Stages 1 and 2 involved extracting three dimensional volumes for bones
and muscles. Stage 3 involved slicing muscles normal to their direction
of force. Stage 4 involved packing fiber-group actuator cross-sections into
the muscle slices. Stage 5 involved associating actuator intersection circles
across slices. And, finally, stage 6 involved connecting actuators to create
piece-wise muscle approximations, Stages 3 and 4 may be parameterized to
create families of models. Dynamics model generation, Stanford 2016

(tracking)

5

S
S6 (final model)
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Preliminary Results: Simulation

A B C

Detailed Simplified Oversimplified
model model model

Predictable
error

olaIsea) Xe

>
‘>
>

T

Unpredictable
error

Y

MRI-based Musculoskeltal Models

Analysis error for different
model simplifications

Detailed model :
is'suboptimal

©
Volumetric ?eGgl-[(I:Srr::ja::-s?h;)f MRI Data Simplify model: Decimate muscles and reduce resolution Modeling detzllil

Fig. 2. Comparing Model Accuracy and Analysis Error. A. Volumetric rendering of bones and muscles extracted from a subject’s anatomical MRI data.
B. A family of models generated from the volumetric data. Skeletons are identical. The muscle model on the left very accurately captures muscle volumes
(2.5mm radius and 2cm length fiber-group segments). The other two models are parametrically decimated by reducing the number of fiber groups per unit
area, without dropping muscles. The musculature in the lower arm is better preserved since the muscles are more numerous and thinner, and thus lose less
detail. C. Analyzing a family of MRI-based models with varying accuracy provides insights into the level of detail required for a given biomechanical
analysis. A family of models with varying detail can help identify and avoid the model simplifications (or improvements) that increase errors. Ideal models
have predictable errors.

Model resolution comparison, Stanford 2016
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Limitations

There are lots of great things about our dynamics model ...

arbitrarily detailed
well-conditioned
trackable in real time
easily parameterizable

lends insight into parameters of importance through sensitivity analysis

P I A: Morphology Analysis via Multi-Subject MRI
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Limitations

There are lots of great things about our dynamics model ...
 arbitrarily detailed

* well-conditioned

* trackable in real time

* easily parameterizable

* lends insight into parameters of importance through sensitivity analysis

.. but we , since all of our data is static.
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PROJECT IB

Muscle Deformation Analysis via Ultrasound

Pl:Geometric Models 72



Key Questions

* Can we differentiate muscle deformation associated with kinematic configuration from
deformation associated with force output!

* If we account for pure configuration-associated deformation, can we infer a clean relationship
between force and deformation that can be used as a control signal?

P I B: Muscle Deformation Analysis via Ultrasound 73



Key Questions

* Can we differentiate muscle deformation associated with kinematic configuration from
deformation associated with force output!’

* If we account for pure configuration-associated deformation, can we infer a clean relationship
between force and deformation that can be used as a control signal?

To answer these questions, we need a to compare across both joint
positions and loading conditions.

P 1 B: Muscle Deformation Analysis via Ultrasound 74




Approach

Model target: elbow flexors (biceps brachii,
brachialis, brachioradialis)

Data set:

* 3 subjects (| F2 M)

e full arm ultrasound volumetric scan
* 4 elbow flexion angles, 0—90°

* 5 loading conditions
— fully supported
— gravity compensation only
— light wrist weight (~225g)

— medium wrist weight (~725g)

— heavy wrist weight (~950g) Ultrasound volumetric data collection, HART Lab 2017
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Data Collection and Processing

; _ ~ el on* .
) ; R R >
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Fle Edll Segmentation Workspace Tools Help GEO ) » @F Qw0 8 [l TueSep1d 1823 akinlaw O @ =
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Preliminary Results

FS LF HF
(“Fully Supported”) (“Low Force”) (“High Force”)

B€Ik€l€y : Muscle Deformation Analysis via Ultrasound 79

UNIVERSITY OF CALIFORNIA



Preliminary Results

: LF-FS Soap ol WALF-FS
HF-FS T e e HF-FS

LF-FS
HF-FS

ACSA (crr
ACSA (C

ACSA (crr

Dist. from Origin (cm) Dist. from Origin (cm) Dist. from Origin (cm)

P 1 B: Muscle Deformation Analysis via Ultrasound
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Preliminary Results
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Next Steps

* Impose and validate one or more deformation models:
— cross-sectional area (CSA) changes
— volume changes
— superquadric models

— shape models
— FEM

* Refine experimental procedures to allow clean comparison of force conditions across
angles

* Speed up / automate segmentation pipeline

P | B: Muscle Deformation Analysis via Ultrasound 82



PROJECT 2

Stress-Strain/Elasticity Models:
AMG and cine DENSE MRI




Capabilities: AMG

“cross-bridge cycling” theory
“vibrating string” theory

ATP is hydrolyzed
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and actin
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“unfused motor unit” theory
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Capabilities: cine DENSE MRI
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Experimental setup, displacement fields of the biceps and triceps, first and second principal strains of the biceps, Zhong 2008
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Conclusions

By investigating both and , we seek to generate a
modeling framework that surpasses existing models in predictive accuracy while remaining

computationally tractable and useful in a wide range of applications.

{lhallock, bajcsy} @ eecs.berkeley.edu
hart.berkeley.edu
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