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OVERVIEW
Human-Assistive Robotic Technologies (HART) Lab
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APEX Gamma exoskeleton,  
HART Lab 2016

Why model musculoskeletal dynamics?

Human dynamics modeling is essential for many 
applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently predict 

dynamics

OVERVIEW
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Gray’s Anatomy, 
1858

Why model musculoskeletal dynamics?

Human dynamics modeling is essential for many 
applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently predict 

dynamics

It’s also difficult.
• complex dynamical system
• morphological variation
• limited sensing (esp. non-invasive)

OVERVIEW
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Objective

We seek to develop models to predict human arm dynamics that

• have appropriate level of abstraction (as simple as possible while accommodating 
dynamically- and medically-relevant pathologies)

• are trainable/customizable using non-invasive sensing (MRI, ultrasound, EMG, AMG, etc.)

• can be used in assistive device control system using non-invasive, wearable sensing (EMG, 
AMG, ultrasound)

OVERVIEW
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Approach

• Project 0: The Simplest Possible Dynamics Model

• Project 1: Geometric Models
– A: Morphology Analysis via Multi-Subject MRI (Stanford-UCB collaboration)
– B: Muscle Deformation Analysis via Ultrasound

• Project 2: Stress-Strain/Elasticity Models
– A: Acoustic Myography (AMG)
– B: cine DENSE MRI

OVERVIEW
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The Simplest Possible Dynamics Model:
Multi-Sensor “Minimal Modeling” of the Human Arm

PROJECT 0
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Dynamics
(contact forces, joint 

torques)

DYNAMICS 
MODEL

Goal: Predictive Upper-Limb Model

• predicts contact forces / joint 
torques of interest

• accommodates musculoskeletal 
pathology 
– injury
– disease (e.g., MD)

• individualized
• computationally tractable

P0: The Simplest Possible Dynamics Model
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Existing Human Dynamics Models
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG, AMG, motion 
capture, ultrasound) Dynamics

(contact forces, joint 
torques)

Morphological 
Assumptions

(biomechanics tables, 
literature values)

Contextual 
Assumptions

(gait cycle, motion primitives)

DYNAMICS 
MODEL

P0: The Simplest Possible Dynamics Model
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Our Objective
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG, AMG, motion 
capture, ultrasound) Dynamics

(contact forces, joint 
torques)

Morphological 
Assumptions

(biomechanics tables, 
literature values)

Contextual 
Assumptions

(gait cycle, motion primitives)

DYNAMICS 
MODEL

P0: The Simplest Possible Dynamics Model
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Starting Point:  Simplified Model

normalized muscle 
activation

elbow torqueMUSCLE MODEL

,

assumed morphological 
parameters

• single individual
• elbow joint (hinge)
• single aggregate “muscle”
• static

elbow angle

P0: The Simplest Possible Dynamics Model
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Starting Point:  Simplified Model

normalized muscle 
activation

elbow torqueMUSCLE MODEL

,

assumed morphological 
parameters

• single individual
• elbow joint (hinge)
• single aggregate “muscle”
• static

elbow angle

If we measure , can we infer ? 

P0: The Simplest Possible Dynamics Model
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Starting Point:  Simplified Model
If we measure , can we infer ? 

P0: The Simplest Possible Dynamics Model
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By examining many discrete coordinate pairs             , we can write the system dynamics as

which admits linear least-squares optimization

to allow the fitting of     from experimental data.

Starting Point:  Simplified Model
If we measure , can we infer ? 

P0: The Simplest Possible Dynamics Model
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sEMG (surface electromyography)
• sensitive, noisy
• aggregate
• based on neurological signals 

(neurological disorder  poor signal)
• well-explored
• industry standard

AMG (acoustic myography)
• improved SNR
• aggregate
• based on physiological 

signals
• novel

sEMG electrodes
CURO

Activation (  ) Measures: sEMG and AMG

P0: The Simplest Possible Dynamics Model
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sEMG

AMG

Sample Activation Data

P0: The Simplest Possible Dynamics Model
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3D View

ActiveInactive

Active

Inactive

Force

Muscle Cross-Section

Activation (  ) Measures: Ultrasound

P0: The Simplest Possible Dynamics Model
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Experimental Setup

~230              data points
• via single-channel (biceps)

– sEMG
– AMG
– ultrasound

• via F/T sensor (mounted to UR5 robot)
• calculated from images (13 waypoints)

50% training, 50% testing (randomly assigned)

force/torque

sEMG

AMG

ultrasound

Data collection, HART Lab 2017

P0: The Simplest Possible Dynamics Model



21

Using both sEMG and AMG:
• predicted force using fitted    is reasonable (~5-10% 

mean error over test set)

Preliminary Results: sEMG vs. AMG

P0: The Simplest Possible Dynamics Model
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Using both sEMG and AMG:
• predicted force using fitted    is reasonable (~5-10% 

mean error over test set)

• predicted force-length relation is biologically 
reasonable but differs across sensors
– max force at reasonable location  accurate
– normalization unreasonable  inaccurate
– more investigation into other parameters needed

Preliminary Results: sEMG vs. AMG

decreasing
Theoretical

Theoretical
sEMG-fit
AMG-fit

P0: The Simplest Possible Dynamics Model
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WP 13
(117˚)
(flexed)

WP 5
(69˚)

WP 1
(25˚)

(extended)

Preliminary Results: Ultrasound

P0: The Simplest Possible Dynamics Model
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WP 13
(117˚)

WP 5
(69˚)

WP 1
(25˚)

No Force Max Force

Preliminary Results: Ultrasound

P0: The Simplest Possible Dynamics Model
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Refined Approach: “Sensor-Driven” Modeling

Key ideas moving forward: 

• use an abstraction for each sensing modality that generates reliable results, even at the 
expense of detail (e.g., sEMG as binary signal)

• determine which parameters/signals are most critical to measure correctly, and focus on 
those

• use optimization/control techniques to use signals effectively (e.g., hybrid systems)

• increase model complexity without overfitting

P0: The Simplest Possible Dynamics Model
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Limitations

The obvious:  The model is vastly over-simplified and is not obviously more useful than other 
single-DoF rigid body models.

P0: The Simplest Possible Dynamics Model



28

Limitations

The obvious:  The model is vastly over-simplified and is not obviously more useful than other 
single-DoF rigid body models.

The less obvious: To effectively extend these models, we need a much more sophisticated 
understanding of the sensor physics.
• Option 1: geometric models (MRI, ultrasound)

– no ready “wearable” signal sources
+ highly localized
– more computationally intensive?

• Option 2: stress-strain/elasticity models (AMG, cine DENSE)
+ AMG as “wearable” signal source
– less localized

P0: The Simplest Possible Dynamics Model
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Limitations

The obvious:  The model is vastly over-simplified and is not obviously more useful than other 
single-DoF rigid body models.

The less obvious: To effectively extend these models, we need a much more sophisticated 
understanding of the sensor physics.
• Option 1: geometric models (MRI, ultrasound)

– no ready “wearable” signal sources
+ highly localized
– more computationally intensive?

• Option 2: stress-strain/elasticity models (AMG, cine DENSE)
+ AMG as “wearable” signal source
– less localized

P0: The Simplest Possible Dynamics Model

Project 1

Project 2
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Geometric Models:
Muscle Morphology and Deformation Analysis

PROJECT 1



31

Morphology Analysis via Multi-Subject MRI
PROJECT 1A (Stanford-UCB collaboration)

P1: Geometric Models
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Motivation

There exist frameworks for human dynamical modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our own models

P1A: Morphology Analysis via Multi-Subject MRI



33

Motivation

There exist frameworks for human dynamical modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our own models

. . . but there do not exist frameworks that tell us how good 
these models are.

P1A: Morphology Analysis via Multi-Subject MRI
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Goal:  Quantify Model Accuracy

We seek to examine

• the morphological variation across subjects,
• existing frameworks’ ability to account for this variation, and
• the impact of this variation on dynamical model prediction accuracy

(specifically, for the human arm).

P1A: Morphology Analysis via Multi-Subject MRI
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Dataset: Upper-Limb MRI Scans

• ~10 subjects, full arm (hand through torso)

• vary in
– age
– health
– height/weight
– gender

• 4 separate scans taken to improve contrast where 
possible, then stitched together in post-processing 
– hand, forearm, elbow (“bird cage” coil)
– shoulder (no additional coil)

PQ

S1

S2

S3

. . .

P1A: Morphology Analysis via Multi-Subject MRI
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Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

P1A: Morphology Analysis via Multi-Subject MRI
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Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

P1A: Morphology Analysis via Multi-Subject MRI
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Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

• evaluate each parameter’s impact on predicted dynamics (contact forces, joint 
torques) using Stanford’s SCL

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Bone Segmentation

Arm bones of 4 subjects segmented using 

• MSER (implemented in MATLAB) (small — e.g., hand — bones)
• active contours (built into itk-SNAP) (larger bones)
• manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)
• manual cleanup (required on ALL bones)

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Bone Segmentation

Arm bones of 4 subjects segmented using 

• MSER (implemented in MATLAB) (small — e.g., hand — bones)
• active contours (built into itk-SNAP) (larger bones)
• manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)
• manual cleanup (required on ALL bones)

extensive manual 
cleanup required!

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Muscle Segmentation

Segmented muscle data, 
Stanford 2016

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive (multiple months for single subject 

by Stanford collaborators)

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Muscle Segmentation

Stitched scan, subject 1 (M)

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection

– large inter- and intra-subject contrast variation
– muscle fascia hard to observe, even for humans
– artifacts (stitching, motion, etc.)

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Muscle Segmentation

Stitched scan, subject 1 (M) Stitched scan, subject 3 (F)

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection
• significant non-affine variation predicted across subjects

– joint angles (likely need to match segments and stick them back together)
– overall morphology

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Muscle Segmentation

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection
• significant non-affine variation

 Instead of segmenting from scratch, map segmented muscles from one 
subject to another!

P1A: Morphology Analysis via Multi-Subject MRI
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Goal: Find best transformation

Approach: Muscle Segmentation

(segmented) reference subject target subject

P1A: Morphology Analysis via Multi-Subject MRI
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Approach: Muscle Segmentation

(segmented) reference subject target subjectatlas

Goal: Find best transformation

P1A: Morphology Analysis via Multi-Subject MRI
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Goal: Find best transformation

 This is a canonical MRI registration problem (use same    on raw scans and muscles), so we
can explore existing libraries!

Approach: Muscle Segmentation

(segmented) reference subject target subjectatlas

P1A: Morphology Analysis via Multi-Subject MRI
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translation + 
rotation (Euler)

affine 
transformation

free-form deformation (FFD) 
(b-spline parameterized)

Most promising results thus far obtained via:
• intensity-based registration
• multi-resolution image pyramids: registered lower-resolution image initializes that 

of next highest resolution
• weighted combination of transform types: lower-DOF transform results 

initialize higher-DOF transform

Approach: Registration Pipeline (Elastix)

P1A: Morphology Analysis via Multi-Subject MRI
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Preliminary Results: Muscle Mapping (sim. only)

P1A: Morphology Analysis via Multi-Subject MRI
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Preliminary Results: Muscle Mapping (bending pen.)

P1A: Morphology Analysis via Multi-Subject MRI
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Preliminary Results: Muscle Mapping (ground truth)

. . . we’re working on it.

P1A: Morphology Analysis via Multi-Subject MRI
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Preliminary bone segmentation 
results show significant 
morphological variation 
across subjects that cannot be 
modeled in existing frameworks.

SUB 1 
(M)

SUB 2
(M)

SUB 3
(F)

Preliminary Results: Comparison

P1A: Morphology Analysis via Multi-Subject MRI
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MRI vs. canonical, Stanford 2016

Preliminary Results:  Comparison

P1A: Morphology Analysis via Multi-Subject MRI
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Preliminary Results:  Simulation

Dynamics model generation, Stanford 2016

P1A: Morphology Analysis via Multi-Subject MRI
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Model resolution comparison, Stanford 2016

Preliminary Results:  Simulation

P1A: Morphology Analysis via Multi-Subject MRI
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Limitations

There are lots of great things about our dynamics model . . . 
• arbitrarily detailed
• well-conditioned
• trackable in real time
• easily parameterizable
• lends insight into parameters of importance through sensitivity analysis

P1A: Morphology Analysis via Multi-Subject MRI
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Limitations

There are lots of great things about our dynamics model . . . 
• arbitrarily detailed
• well-conditioned
• trackable in real time
• easily parameterizable
• lends insight into parameters of importance through sensitivity analysis

. . . but we still can’t validate how good it is, since all of our data is static.

P1A: Morphology Analysis via Multi-Subject MRI
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Muscle Deformation Analysis via Ultrasound
PROJECT 1B

P1: Geometric Models
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Key Questions

• Can we differentiate muscle deformation associated with kinematic configuration from 
deformation associated with force output?

• If we account for pure configuration-associated deformation, can we infer a clean relationship 
between force and deformation that can be used as a control signal?

P1B: Muscle Deformation Analysis via Ultrasound
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Key Questions

• Can we differentiate muscle deformation associated with kinematic configuration from 
deformation associated with force output?

• If we account for pure configuration-associated deformation, can we infer a clean relationship 
between force and deformation that can be used as a control signal?

To answer these questions, we need a factorial set of muscle scans to compare across both joint 
positions and loading conditions.

P1B: Muscle Deformation Analysis via Ultrasound
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Approach

Model target: elbow flexors (biceps brachii, 
brachialis, brachioradialis)
Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– fully supported
– gravity compensation only
– light wrist weight (~225g)
– medium wrist weight (~725g)
– heavy wrist weight (~950g) Ultrasound volumetric data collection, HART Lab 2017

P1B: Muscle Deformation Analysis via Ultrasound
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Data Collection and Processing

P1B: Muscle Deformation Analysis via Ultrasound
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Data Collection and Processing: PLUS/3DSlicer

P1B: Muscle Deformation Analysis via Ultrasound
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Data Collection and Processing: ITK-SNAP

P1B: Muscle Deformation Analysis via Ultrasound
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Preliminary Results 

30˚

60˚

90˚

FS
(“Fully Supported”)

30˚

60˚

90˚

LF
(“Low Force”)

30˚

60˚

90˚

HF
(“High Force”)

P1B: Muscle Deformation Analysis via Ultrasound
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Preliminary Results 

P1B: Muscle Deformation Analysis via Ultrasound
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Preliminary Results 

ICRA 2018

P1B: Muscle Deformation Analysis via Ultrasound
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Next Steps

• Impose and validate one or more deformation models:
– cross-sectional area (CSA) changes
– volume changes
– superquadric models
– shape models
– FEM

• Refine experimental procedures to allow clean comparison of force conditions across 
angles

• Speed up / automate segmentation pipeline

P1B: Muscle Deformation Analysis via Ultrasound
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Stress-Strain/Elasticity Models:
AMG and cine DENSE MRI

PROJECT 2
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Capabilities:  AMG

ESTi® Score evaluation, Harrison 2017

P2: Stress-Strain/Elasticity Models

?

“cross-bridge cycling” theory

“unfused motor unit” theory

“vibrating string” theory
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Capabilities:  cine DENSE MRI

Experimental setup, displacement fields of the biceps and triceps, first and second principal strains of the biceps, Zhong 2008

P2: Stress-Strain/Elasticity Models
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CONCLUSIONS
PROJECT 1 & 2
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Conclusions

By investigating both geometric and strain-based models of the human arm, we seek to generate a 
modeling framework that surpasses existing models in predictive accuracy while remaining 
computationally tractable and useful in a wide range of applications.

{lhallock, bajcsy} @ eecs.berkeley.edu
hart.berkeley.edu

CONCLUSIONS
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L.A. Hallock, A. Kato, and R. Bajcsy. “Empirical Quantification and Modeling of Muscle Deformation: Toward
Ultrasound-Driven Assistive Device Control.” IEEE International Conference on Robotics and Automation (ICRA), 
2018. (under review)

L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. “Sensor-Driven Musculoskeletal Dynamic Modeling.” 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016. (late-breaking 
report)

S. Menon, T. Migimatsu, and O. Khatib. “A Parameterized Family of Anatomically Accurate Human Upper-Body 
Musculoskeletal Models for Dynamic Simulation & Control.” IEEE RAS International Conference on Humanoid 
Robots, 2016.

Technical Reports
L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. (2016) “Sensor-Driven Musculoskeletal Dynamic Modeling.” 
UC Berkeley EECS, Tech. Rep. UCB/EECS-2016-66.
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PROJECT 1 & 2
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