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OVERVIEW
Human-Assistive Robotic Technologies (HART) Lab
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HART Lab Ecosystem
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Gamma exoskeleton,  
HART Lab 2016

Why model musculoskeletal dynamics?

Human dynamics modeling is essential for many 
applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently predict 

dynamics

OVERVIEW
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Gray’s Anatomy, 
1858

Why model musculoskeletal dynamics?

Human dynamics modeling is essential for many 
applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently predict 

dynamics

It’s also difficult.
• complex dynamical system
• morphological variation
• limited sensing (esp. non-invasive)

OVERVIEW
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Objectives & Approach

We seek to:
• develop a dynamical modeling framework of the human arm
• understand the assumptions made when simplifying these models
For clarity, we define:
• Project I: multi-sensor minimal modeling of the human arm (UCB)
• Project II: multi-subject MRI data analysis and dynamical simulation (Stanford-UCB collaboration)

These projects are occurring in parallel and will eventually converge.

OVERVIEW
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Objectives & Approach

We seek to:
• develop a dynamical modeling framework of the human arm
• understand the assumptions made when simplifying these models

For clarity, we define:
• Project 1: building a predictive dynamics model of the human arm using multiple sensors 

(sEMG, AMG, ultrasound, etc.) (UCB)
• Project 2: characterizing model quality via multi-subject MRI (Stanford-UCB collaboration)

OVERVIEW
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Building a Predictive Dynamics Model:
Multi-Sensor “Minimal Modeling” of the Human Arm

PROJECT I (UCB)
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Dynamics
(contact forces, joint 

torques)

DYNAMICS 
MODEL

Goal: Predictive Upper-Limb Model

• predicts contact forces / joint 
torques of interest

• accommodates musculoskeletal 
pathology 
– injury
– disease (e.g., MD)

• individualized
• computationally tractable

P1: Building a Predictive Dynamics Model
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Existing Human Dynamics Models
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG, AMG, motion 
capture, ultrasound) Dynamics

(contact forces, joint 
torques)

Morphological 
Assumptions

(biomechanics tables, 
literature values)

Contextual 
Assumptions

(gait cycle, motion primitives)

DYNAMICS 
MODEL

P1: Building a Predictive Dynamics Model
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Our Objective
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG, AMG, motion 
capture, ultrasound) Dynamics

(contact forces, joint 
torques)

Morphological 
Assumptions

(biomechanics tables, 
literature values)

Contextual 
Assumptions

(gait cycle, motion primitives)

DYNAMICS 
MODEL

P1: Building a Predictive Dynamics Model
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Starting Point:  Simplified Model

normalized muscle 
activation

elbow torqueMUSCLE MODEL

,

assumed morphological 
parameters

• single individual
• elbow joint (hinge)
• single aggregate “muscle”
• static

elbow angle

P1: Building a Predictive Dynamics Model
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Starting Point:  Simplified Model

normalized muscle 
activation

elbow torqueMUSCLE MODEL

,

assumed morphological 
parameters

• single individual
• elbow joint (hinge)
• single aggregate “muscle”
• static

elbow angle

If we measure , can we infer ? 

P1: Building a Predictive Dynamics Model
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Starting Point:  Simplified Model
If we measure , can we infer ? 

P1: Building a Predictive Dynamics Model
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By examining many discrete coordinate pairs             , we can write the system dynamics as

which admits linear least-squares optimization

to allow the fitting of     from experimental data.

Starting Point:  Simplified Model
If we measure , can we infer ? 

P1: Building a Predictive Dynamics Model
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sEMG (surface electromyography)
• sensitive, noisy
• aggregate
• based on neurological signals 

(neurological disorder  poor signal)
• well-explored
• industry standard

AMG (acoustic myography)
• improved SNR
• aggregate
• based on physiological 

signals
• novel

sEMG electrodes
CURO

Activation (  ) Measures: sEMG and AMG

P1: Building a Predictive Dynamics Model



18

sEMG

AMG

Sample Activation Data

P1: Building a Predictive Dynamics Model
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3D View

ActiveInactive

Active

Inactive

Force

Muscle Cross-Section

Activation (  ) Measures: Ultrasound

P1: Building a Predictive Dynamics Model
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Experimental Setup

~230              data points
• via single-channel (biceps)

– sEMG
– AMG
– ultrasound

• via F/T sensor (mounted to UR5 robot)
• calculated from images (13 waypoints)

50% training, 50% testing (randomly assigned)

force/torque

sEMG

AMG

ultrasound

Data collection, HART Lab 2017

P1: Building a Predictive Dynamics Model
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Using both sEMG and AMG:
• predicted force using fitted    is reasonable (~5-10% 

mean error over test set)

Preliminary Results: sEMG vs. AMG

P1: Building a Predictive Dynamics Model
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Using both sEMG and AMG:
• predicted force using fitted    is reasonable (~5-10% 

mean error over test set)

• predicted force-length relation is biologically 
reasonable but differs across sensors
– max force at reasonable location  accurate
– normalization unreasonable  inaccurate
– more investigation into other parameters needed

Preliminary Results: sEMG vs. AMG

decreasing
Theoretical

Theoretical
sEMG-fit
AMG-fit

P1: Building a Predictive Dynamics Model
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WP 13
(117˚)
(flexed)

WP 5
(69˚)

WP 1
(25˚)

(extended)

Preliminary Results: Ultrasound

P1: Building a Predictive Dynamics Model



24

WP 13
(117˚)

WP 5
(69˚)

WP 1
(25˚)

No Force Max Force

Preliminary Results: Ultrasound

P1: Building a Predictive Dynamics Model
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Open question: could particle tracking yield insight into dynamics, or 
only kinematics?

Preliminary Results: Ultrasound

P1: Building a Predictive Dynamics Model
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Current Work: US Muscle Deformation Model

Key questions:
• Can we differentiate muscle deformation associated with kinematic configuration from 

deformation associated with force output?
• If we account for pure configuration-associated deformation, can we infer a clean relationship 

between force and deformation that can be used as a control signal?

Possible deformation models:
• cross-sectional area (CSA) changes
• volume changes
• superquadric models
• FEM

P1: Building a Predictive Dynamics Model
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Current Work: US Muscle Deformation Model

Model target: elbow flexors (biceps brachii, 
brachialis, brachioradialis)
Data set:
• 3 subjects (1 F, 2 M)
• full arm ultrasound volumetric scan
• 4 elbow flexion angles, 0–90˚
• 5 loading conditions

– fully supported
– gravity compensation only
– light wrist weight (~225g)
– medium wrist weight (~725g)
– heavy wrist weight (~950g)

P1: Building a Predictive Dynamics Model

Ultrasound volumetric data collection, HART Lab 2017
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Current Work: US Muscle Deformation Model

P1: Building a Predictive Dynamics Model

full extension
(0˚)

full flexion
(90˚)

Next step: segment elbow flexors and characterize deformation
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Future Work: Model Improvements

• Extract and incorporate morphological parameters from
– MRI (bone volumes, muscle volumes, muscle attachment points)
– ultrasound (PCSA, tendon length)

• Incorporate knowledge of AMG physics (cross-bridge cycling vs. vibrating string vs. 
unfused motor unit theory)

• Maintain “minimal modeling” framework while increasing complexity
– multiple muscles
– dynamic conditions (Hill model)

P1: Building a Predictive Dynamics Model
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Future Work: “Sensor-Driven” Modeling

Key ideas moving forward: 

• use an abstraction for each sensing modality that generates reliable results, even at the 
expense of detail (e.g., sEMG as binary signal)

• determine which parameters/signals are most critical to measure correctly, and focus on 
those

• use optimization/control techniques to use signals effectively (e.g., hybrid systems)

P1: Building a Predictive Dynamics Model
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Characterizing Model Quality:
Multi-Subject MRI Data Analysis and Dynamical 
Simulation

PROJECT II (Stanford-UCB collaboration)
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Motivation

There exist frameworks for human modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our own models

P2: Characterizing Model Quality
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Motivation

There exist frameworks for human modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our own models

. . . but there do not exist frameworks that tell us how good 
these models are.

P2: Characterizing Model Quality
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Goal:  Quantify Model Accuracy

We seek to examine

• the morphological variation across subjects,
• existing frameworks’ ability to account for this variation, and
• the impact of this variation on dynamical model prediction accuracy

(specifically, for the human arm).

P2: Characterizing Model Quality
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Dataset: Upper-Limb MRI Scans

• ~10 subjects, full arm (hand through torso)

• vary in
– age
– health
– height/weight
– gender

• 4 separate scans taken to improve contrast where 
possible, then stitched together in post-processing 
– hand, forearm, elbow (“bird cage” coil)
– shoulder (no additional coil)

PQ

S1

S2

S3

. . .

P2: Characterizing Model Quality
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Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

P2: Characterizing Model Quality



37

Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

P2: Characterizing Model Quality
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Approach

Segmented muscle data, 
Stanford 2016

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

• evaluate each parameter’s impact on predicted dynamics (contact forces, joint 
torques) using Stanford’s SCL

P2: Characterizing Model Quality
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Approach: Bone Segmentation

Arm bones of 4 subjects segmented using 

• MSER (implemented in MATLAB) (small — e.g., hand — bones)
• active contours (built into itk-SNAP) (larger bones)
• manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)
• manual cleanup (required on ALL bones)

P2: Characterizing Model Quality
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Approach: Bone Segmentation

Arm bones of 4 subjects segmented using 

• MSER (implemented in MATLAB) (small — e.g., hand — bones)
• active contours (built into itk-SNAP) (larger bones)
• manual coloring in itk-SNAP (poor contrast — e.g., shoulder — bones)
• manual cleanup (required on ALL bones)

extensive manual 
cleanup required!

P2: Characterizing Model Quality
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Preliminary Results: Hand/MSER

P2: Characterizing Model Quality
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Preliminary Results: Hand/Manual

P2: Characterizing Model Quality
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Preliminary Results: Forearm/AC

P2: Characterizing Model Quality
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Preliminary Results: Forearm/Manual

P2: Characterizing Model Quality
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Approach: Muscle Segmentation

Segmented muscle data, 
Stanford 2016

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive (multiple months for single subject 

by Stanford collaborators)

P2: Characterizing Model Quality
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Approach: Muscle Segmentation

Stitched scan, subject 1 (M)

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection

– large inter- and intra-subject contrast variation
– muscle fascia hard to observe, even for humans
– artifacts (stitching, motion, etc.)

P2: Characterizing Model Quality
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Approach: Muscle Segmentation

Stitched scan, subject 1 (M) Stitched scan, subject 3 (F)

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection
• significant non-affine variation predicted across subjects

– joint angles (likely need to match segments and stick them back together)
– overall morphology

P2: Characterizing Model Quality
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Approach: Muscle Segmentation

Muscle segmentation presents further challenges:
• manual segmentation prohibitively time-intensive
• poorly suited to generic blob/edge detection
• significant non-affine variation

 Instead of segmenting from scratch, map segmented muscles from one 
subject to another!

P2: Characterizing Model Quality
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Goal: Find best transformation

Approach: Muscle Segmentation

(segmented) reference subject target subject

P2: Characterizing Model Quality
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Approach: Muscle Segmentation

(segmented) reference subject target subjectatlas

Goal: Find best transformation

P2: Characterizing Model Quality
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Goal: Find best transformation

 This is a canonical MRI registration problem (use same    on raw scans and muscles), so we
can explore existing libraries!

Approach: Muscle Segmentation

(segmented) reference subject target subjectatlas

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

optimal 
transformation

similarity 
function
(e.g., MI)

reference image

target 
image

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

optimal 
transformation 
parameters

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

optimal 
transformation 
parameters

Potential DoF
# similarity function classes
*  # parameters 

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

penalty function
(e.g., bending penalty)

Potential DoF
# similarity function classes
*  # parameters 
*  # penalty function classes
*  #    values

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

function parameters

Potential DoF
# similarity function classes
*  # parameters 
*  # penalty function classes
*  #    values
*  # similarity function parameters
*  # penalty function parameters

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

Additionally, we have no convexity guarantees.
Potential DoF

# similarity function classes
*  # parameters 
*  # penalty function classes
*  #    values
*  # similarity function parameters
*  # penalty function parameters

P2: Characterizing Model Quality
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Approach: Muscle Segmentation as Registration 

Our problem of finding                    can be formulated as registration optimization problem

Additionally, we have no convexity guarantees.
 must build application-specific intuition for parameter

importance and begin optimization close to good 
local optimum

Potential DoF
# similarity function classes
*  # parameters 
*  # penalty function classes
*  #    values
*  # similarity function parameters
*  # penalty function parameters

P2: Characterizing Model Quality
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translation + 
rotation (Euler)

affine 
transformation

free-form deformation (FFD) 
(b-spline parameterized)

Most promising results thus far obtained via:
• intensity-based registration
• multi-resolution image pyramids: registered lower-resolution image initializes that 

of next highest resolution
• weighted combination of transform types: lower-DOF transform results 

initialize higher-DOF transform

Approach: Registration Pipeline (Elastix)

P2: Characterizing Model Quality
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Approach: Elastix Parameters

P2: Characterizing Model Quality
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Particularly impactful parameters include:
• choice of similarity function

– mutual information appears superior to mean squared difference

• penalty functions
– bending penalty to avoid overfitting
– rigidity penalty associated with areas known to be rigid (i.e., bones)

• error computation at each iteration
– uniformly random voxels vs. random voxels within a local neighborhood

• number of iterations

Approach: Elastix Parameters

P2: Characterizing Model Quality
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Preliminary Results: Muscle Mapping (sim. only)

P2: Characterizing Model Quality
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Preliminary Results: Muscle Mapping (bending pen.)

P2: Characterizing Model Quality



64

Preliminary Results: Muscle Mapping (ground truth)

. . . we’re working on it.

P2: Characterizing Model Quality
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Preliminary bone segmentation 
results show significant 
morphological variation 
across subjects that cannot be 
modeled in existing frameworks.

SUB 1 
(M)

SUB 2
(M)

SUB 3
(F)

Preliminary Results: Comparison

P2: Characterizing Model Quality
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MRI vs. canonical, Stanford 2016

Preliminary Results:  Comparison

P2: Characterizing Model Quality
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Preliminary Results:  Simulation

Dynamics model generation, Stanford 2016

P2: Characterizing Model Quality
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Model resolution comparison, Stanford 2016

Preliminary Results:  Simulation

P2: Characterizing Model Quality
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Next Steps

• morphology extraction
– develop sufficiently fast segmentation pipeline (automated or manual or both)
– complete segmentation (first bone, then muscle) of initial ~10-subject cohort

• (quantitative) morphology comparison

• dynamics model evaluation
– validate existing optimization-based control scheme using additional sensing data (ultrasound, 

sEMG, AMG, etc.)
– determine morphological parameters to which dynamics is most sensitive
– characterize model changes across resolution

P2: Characterizing Model Quality
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CONCLUSIONS
PROJECT I & II
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Conclusions

By investigating both multi-sensor modeling of a single subject and large-scale morphological 
modeling of many subjects, we seek to generate a modeling framework that surpasses existing 
models in predictive accuracy while remaining useful in a wide range of applications.

{lhallock, bajcsy} @ eecs.berkeley.edu
hart.berkeley.edu

CONCLUSIONS
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Papers

Conference Papers
L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. “Sensor-Driven Musculoskeletal Dynamic Modeling.” 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016. (late-
breaking report)

S. Menon, T. Migimatsu, and O. Khatib. “A Parameterized Family of Anatomically Accurate Human 
Upper-Body Musculoskeletal Models for Dynamic Simulation & Control.” IEEE RAS International 
Conference on Humanoid Robots, 2016.

Technical Reports
L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. (2016) “Sensor-Driven Musculoskeletal Dynamic 
Modeling.” UC Berkeley EECS, Tech. Rep. UCB/EECS-2016-66.

CONCLUSIONS
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Sponsors
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FIN
PROJECT I & II
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