Human Musculoskeletal Dynamic Modeling: Current Research and Objectives

Laura Hallock Ruzena Bajcsy CAEC Seminar 2017.01.22

Human-Assistive Robotic Technologies (HART) Lab

OVERVIEW

Levels of human modeling abstraction

Why model musculoskeletal dynamics?

Human dynamical modeling is essential for many applications.

- understanding forces imperative in physical HRI
- non-physiological models cannot sufficiently predict dynamics

Gamma exoskeleton, HART Lab 2016

Why model musculoskeletal dynamics?

Human dynamical modeling is essential for many applications.

- understanding forces imperative in physical HRI
- non-physiological models cannot sufficiently predict dynamics

It's also difficult.

- complex dynamical system
- morphological variation
- limited sensing (esp. non-invasive)

Objectives & Approach

We seek to:

- develop a dynamical modeling framework of the human arm
- understand the assumptions made when simplifying these models

Objectives & Approach

We seek to:

- develop a dynamical modeling framework of the human arm
- understand the assumptions made when simplifying these models

For clarity, we define:

- **Project I**: multi-sensor minimal modeling of the human arm (UCB)
- **Project II**: multi-subject MRI data analysis and dynamical simulation (Stanford-UCB collaboration)

parameters that must be measured precisely

PROJECT I (UCB)

Multi-Sensor Minimal Modeling of the Human Arm

Goal: Predictive Upper-Limb Model

- predicts contact forces / joint torques of interest
- accommodates musculoskeletal pathology
 - injury
 - disease (e.g., MD)
- individualized
- computationally tractable

Existing Human Dynamical Models

Our Objective

Starting Point: Simplified Model

- single individual
- elbow joint (hinge)
- single aggregate "muscle"
- static
- Inputs:
 - $\bar{a}\,$ normalized activation (sEMG)
 - heta joint angle (motion capture)
- Outputs:
 - au elbow torque

Starting Point: Simplified Model

Assuming muscle force-length relation

$$F_m(\bar{l}) = F_0(\beta_1 \bar{l}^2 + \beta_2 \bar{l} + \beta_3)$$

and normalized muscle activation and length

the dynamics relation of each (\bar{a}, τ, θ) pair is described by

$$\begin{bmatrix} \tau_{in,1} + rF_{in,1} - \frac{1}{2}mg\sin\theta_{1}r\\ \vdots\\ \tau_{in,n} + rF_{in,n} - \frac{1}{2}mg\sin\theta_{n}r \end{bmatrix} = \begin{bmatrix} \tau_{1}\\ \vdots\\ \tau_{n} \end{bmatrix} = F_{0}r_{l}r_{u} \begin{bmatrix} \frac{l_{1}}{l_{opt}^{2}}\sin\theta_{1}\bar{a}_{1} & \frac{1}{l_{opt}}\sin\theta_{1}\bar{a}_{1} & \frac{1}{l_{1}}\sin\theta_{1}\bar{a}_{1}\\ \vdots\\ \frac{l_{n}}{l_{opt}^{2}}\sin\theta_{n}\bar{a}_{n} & \frac{1}{l_{opt}}\sin\theta_{n}\bar{a}_{n} & \frac{1}{l_{n}}\sin\theta\bar{a}_{n} \end{bmatrix} \begin{bmatrix} \beta_{1}\\ \beta_{2}\\ \beta_{3} \end{bmatrix}$$

$$T$$

$$W$$

Simplified Model Validation

Can we expect to learn muscle force-length relation from the data we have?

Hypothesize Approximate System

- Set morphological parameters to approximate biceps
- Assume force-length curve:

Simplified Model Validation

Can we expect to learn muscle force-length relation from the data we have?

25 20 15

Simplified Model Validation

Can we expect to learn muscle force-length relation from the data we have?

base parameters

Experimental Setup

~400 (\bar{a}, τ, θ) data points

- \bar{a} via single-channel sEMG (Myo on upper arm)
- τ via F/T sensor (mounted to UR5 robot)
- θ calculated from images (15 waypoints)

Preliminary Results

The generated (\bar{a}, τ, θ) surface is qualitatively reasonable and fits the data well, and the predicted force-length relation is biologically reasonable.

Future Work: sEMG → AMG

sEMG

- sensitive, noisy
- aggregate
- based on neurological signals (neurological disorder → poor signal)
- well-explored

AMG (acoustic myography)

- improved SNR
- aggregate
- based on physiological signals
- novel

Future Work: sEMG \rightarrow Ultrasound

Future Work: Model Improvements

- Extract morphological parameters from
 - MRI (bone volumes, muscle volumes, muscle attachment points)
 - ultrasound (PCSA, tendon length)
- Maintain "minimal modeling" framework while **increasing complexity**
 - multiple muscles
 - dynamic conditions (Hill model)

PROJECT II (Stanford-UCB collaboration)

Multi-Subject MRI Data Analysis and Dynamical Simulation

Motivation

There exist **frameworks for human modeling** ...

- OpenSim / AnyBody
- task-specific models
- our project I model

Motivation

There exist **frameworks for human modeling**

- OpenSim / AnyBody
- task-specific models
- our project l model

... but there do not exist frameworks that tell us **how good these models are**.

Goal: Quantify Model Accuracy

We seek to examine

- morphological variation across subjects
- existing frameworks' **ability to account for this variation**
- **impact of this variation** on dynamical model prediction accuracy

Dataset: Upper-Limb MRI Scans

- 8-10 subjects, full arm (hand through torso)
- vary in
 - age
 - health
 - height/weight
 - gender

Hand MRI, intermediate phalanx manually segmented, Berkeley 2016

Approach

- extract parameters of interest
 - bone/muscle volumes
 - bone/muscle length
 - muscle-bone attachment points

Segmented muscle data, Stanford 2016

Approach

- extract parameters of interest
 - bone/muscle volumes
 - bone/muscle length
 - muscle-bone attachment points
- compare parameters
 - across subjects
 - across perturbed subjects
 - with best canonical model approximation (e.g., OpenSim)

Segmented muscle data, Stanford 2016

Approach

- extract parameters of interest
 - bone/muscle volumes
 - bone/muscle length
 - muscle-bone attachment points
- compare parameters
 - across subjects
 - across perturbed subjects
 - with best canonical model approximation (e.g., OpenSim)
- evaluate each parameter's impact on predicted dynamics (contact forces, joint torques) using Stanford's SCL

Segmented muscle data, Stanford 2016

Preliminary Results: Hand/Auto

Preliminary Results: Hand/Manual

Preliminary Results: Forearm/Auto

Preliminary Results: Forearm/Manual

Preliminary Results: Comparison

SUBJECT 2

SUBJECT 3

Preliminary segmentation results **show significant morphological variation across subjects** that cannot be modeled in existing frameworks.

Preliminary Results: Comparison

Subject-Specific Model Bone (radius)

MRI vs. canonical, Stanford 2016

Preliminary Results: Simulation

Model resolution comparison, Stanford 2016

PROJECT I & II CONCLUSIONS

Conclusions

By investigating both

- multi-sensor modeling of a single subject, and
- large-scale morphological modeling of many subjects,

we seek to generate a modeling framework that surpasses existing models in predictive accuracy while remaining useful in a wide range of applications.

People (Musculoskeletal Modeling)

UC Berkeley

R. Bajcsy

L. Hallock

R. Matthew

S. Seko

A. Sy

J. Zhang

Stanford Collaborators

S. Menon

SIEMENS

Berkeley

Artificial Intelligence Research Laboratory

Conference Papers

L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. "Sensor-Driven Musculoskeletal Dynamic Modeling." International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016. (late-breaking report)

S. Menon, T. Migimatsu, and O. Khatib." A Parameterized Family of Anatomically Accurate Human Upper-Body Musculoskeletal Models for Dynamic Simulation & Control." *IEEE RAS International Conference on Humanoid Robots*, 2016.

Technical Reports

L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. (2016) "Sensor-Driven Musculoskeletal Dynamic Modeling." UC Berkeley EECS, Tech. Rep. UCB/EECS-2016-66.

