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OVERVIEW
Human-Assistive Robotic Technologies (HART) Lab
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Levels of  human modeling abstraction



Why model musculoskeletal dynamics?

Human dynamical modeling is essential for 
many applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently 

predict dynamics

Gamma exoskeleton,  HART 
Lab 2016



Why model musculoskeletal dynamics?

Human dynamical modeling is essential for 
many applications.
• understanding forces imperative in physical HRI
• non-physiological models cannot sufficiently 

predict dynamics

It’s also difficult.
• complex dynamical system
• morphological variation
• limited sensing (esp. non-invasive)

Gray’s Anatomy, 
1858



Objectives & Approach

We seek to:
• develop a dynamical modeling framework of the human arm
• understand the assumptions made when simplifying these models
For clarity, we define:
• Project I: multi-sensor minimal modeling of the human arm (UCB)
• Project II: multi-subject MRI data analysis and dynamical simulation 

(Stanford-UCB collaboration)

These projects are occurring in parallel and will eventually converge.
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Project I-II Interfacing

PROJECT I:
Model Creation

PROJECT II:
Model 

Evaluation

parameters that are of interest

parameters that must be measured precisely



Multi-Sensor Minimal Modeling of 
the Human Arm

PROJECT I (UCB)



Goal: Predictive Upper-Limb Model

• predicts contact forces / 
joint torques of interest

• accommodates 
musculoskeletal pathology 
– injury
– disease (e.g., MD)

• individualized
• computationally tractable

Dynamics
(contact forces, joint 

torques)

DYNAMICAL 
MODEL



Existing Human Dynamical Models
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
(sEMG, AMG, motion 
capture, ultrasound) Dynamics

(contact forces, joint 
torques)

Morphological 
Assumptions

(biomechanics tables, 
literature values)

Contextual 
Assumptions

(gait cycle, motion primitives)
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Our Objective
(Static) 

Morphological Data
(MRI, ultrasound)

Real-Time Data
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Assumptions

(gait cycle, motion primitives)

DYNAMICAL 
MODEL



Starting Point:  Simplified Model

• single individual
• elbow joint (hinge)
• single aggregate “muscle”
• static

• Inputs:
normalized activation (sEMG)
joint angle (motion capture)

• Outputs:
elbow torque



Assuming muscle force-length relation

and normalized muscle activation and length

the dynamics relation of each             pair is described by

Starting Point:  Simplified Model



Simplified Model Validation

Can we expect to learn muscle force-length relation from the data we have?

Hypothesize Approximate 
System

• Set morphological parameters 
to approximate biceps

• Assume force-length curve:
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• Assume force-length curve:

Generate Synthetic 
Data

Based on hypothesized system, 
generate            pairs:

Can we expect to learn muscle force-length relation from the data we have?



Simplified Model Validation

Hypothesize Approximate 
System

• Set morphological parameters 
to approximate biceps

• Assume force-length curve:

Generate Synthetic 
Data

Based on hypothesized system, 
generate            pairs:

Add Noise + Recover 
System Function via 

Least Squares

To verify system’s validity:
• condition number of W
• numerical computation of 

base parameters

Can we expect to learn muscle force-length relation from the data we have?



Experimental Setup

~400              data points
• via single-channel sEMG (Myo on upper arm)
• via F/T sensor (mounted to UR5 robot)
• calculated from images (15 waypoints)



Preliminary Results

The generated             surface is qualitatively reasonable and fits the 
data well, and the predicted force-length relation is biologically 
reasonable.



Future Work:  sEMGAMG

sEMG
• sensitive, noisy
• aggregate
• based on neurological 

signals (neurological disorder 
 poor signal)

• well-explored

AMG (acoustic myography)
• improved SNR
• aggregate
• based on physiological 

signals

• novel

Myo

CURO



Future Work:  sEMG Ultrasound
3D View

ActiveInactive

Active

Inactive

Force

Muscle Cross-Section



Future Work:  Model Improvements

• Extract morphological parameters from
– MRI (bone volumes, muscle volumes, muscle attachment points)
– ultrasound (PCSA, tendon length)

• Maintain “minimal modeling” framework while increasing complexity
– multiple muscles
– dynamic conditions (Hill model)



Multi-Subject MRI Data Analysis 
and Dynamical Simulation

PROJECT II (Stanford-UCB collaboration)



Motivation

There exist frameworks for human modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our project I model



Motivation

There exist frameworks for human modeling . . . 
• OpenSim / AnyBody
• task-specific models
• our project I model

. . . but there do not exist frameworks that tell us how good these 
models are.



Goal:  Quantify Model Accuracy

We seek to examine
• morphological variation across subjects
• existing frameworks’ ability to account for this variation
• impact of this variation on dynamical model prediction accuracy



Dataset: Upper-Limb MRI Scans

• 8-10 subjects, full arm (hand through torso)
• vary in

– age
– health
– height/weight
– gender

Myo

Hand MRI, intermediate phalanx manually segmented, Berkeley 2016



Approach

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

Segmented muscle data, 
Stanford 2016



Approach

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

Segmented muscle data, 
Stanford 2016



Approach

• extract parameters of interest
– bone/muscle volumes
– bone/muscle length
– muscle-bone attachment points

• compare parameters
– across subjects
– across perturbed subjects
– with best canonical model approximation (e.g., OpenSim)

• evaluate each parameter’s impact on predicted dynamics 
(contact forces, joint torques) using Stanford’s SCL

Segmented muscle data, 
Stanford 2016



Preliminary Results: Hand/Auto



Preliminary Results: Hand/Manual



Preliminary Results: Forearm/Auto



Preliminary Results: Forearm/Manual



Preliminary Results: Comparison

Preliminary segmentation results show significant morphological 
variation across subjects that cannot be modeled in existing frameworks.

SUBJECT 1 SUBJECT 2 SUBJECT 3



Preliminary Results:  Comparison

MRI vs. canonical, Stanford 2016



Preliminary Results:  Simulation

Model resolution comparison, Stanford 2016



CONCLUSIONS
PROJECT I & II



Conclusions

By investigating both 
• multi-sensor modeling of a single subject, and 
• large-scale morphological modeling of many subjects, 
we seek to generate a modeling framework that surpasses 
existing models in predictive accuracy while remaining 
useful in a wide range of applications.



People (Musculoskeletal Modeling)

UC Berkeley

Stanford Collaborators

R. Bajcsy L. Hallock R. Matthew S. Seko A. Sy S. Sharma J. Zhang

S. MenonO. Khatib



Sponsors



Papers
Conference Papers
L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. “Sensor-Driven Musculoskeletal 
Dynamic Modeling.” International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), 2016. (late-breaking report)

S. Menon, T. Migimatsu, and O. Khatib. “A Parameterized Family of Anatomically 
Accurate Human Upper-Body Musculoskeletal Models for Dynamic Simulation 
& Control.” IEEE RAS International Conference on Humanoid Robots, 2016.

Technical Reports
L.A. Hallock, R.P. Matthew, S. Seko, and R. Bajcsy. (2016) “Sensor-Driven 
Musculoskeletal Dynamic Modeling.” UC Berkeley EECS, Tech. Rep. UCB/EECS-
2016-66.
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