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Abstract— We present a novel neural-network-based pipeline
for segmentation of 3D muscle and bone structures from
localized 2D ultrasound data of the human arm. Building
from the U-Net [1] neural network framework, we examine
various data augmentation techniques and training data sets to
both optimize the network’s performance on our data set and
hypothesize strategies to better select training data, minimizing
manual annotation time while maximizing performance. We
then employ this pipeline to generate the OpenArm 2.0 data
set, the first factorial set of multi-subject, multi-angle, multi-
force scans of the arm with full volumetric annotation of the
biceps and humerus. This data set has been made available
on SimTK (https://simtk.org/projects/openarm) to
enable future exploration of muscle force modeling, improved
musculoskeletal graphics, and assistive device control.

I. INTRODUCTION

A deep understanding of human motion dynamics requires
a deep understanding of our (muscle) actuators. Although a
number of systems exist that attempt to model multi-muscle
structures [2, 3], these frameworks make strong optimization-
based assumptions about the distribution of force across
synergistic muscles that preclude modeling of many motions
of interest. In particular, these systems often assume that
humans are exerting the least muscle force possible to execute
a particular dynamic trajectory, an assumption that prevents
modeling of stiffness, balance, and dexterity in both healthy
individuals and those who exhibit musculoskeletal pathology
(e.g., stroke-induced plegia, antagonistic co-contraction due
to Parkinsons’ disease). In addition, these high-dimensional
systems largely rely on sparse and aggregate data to fit models
to individuals, resulting in substantial modeling error.

These limitations — inaccurate force attribution between
muscles and inadequate consideration of musculoskeletal
geometry variation across individuals — could be mitigated
by improved measurement of individual muscles. At the same
time, single-muscle force and stiffness properties cannot be
readily disambiguated from joint torque values (the result
of multiple muscles’ efforts) or surface electromyography
(sEMG) data (an aggregate and noisy activation signal of
all muscles near the sensor’s electrode). In this paper, we
argue that muscle deformation represents a promising signal
to gain insight into both passive tissue properties and patterns
of muscle activity, as deformation occurs under both passive
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changes in kinematic configuration and active loading [4].
In particular, deformation provides a mechanical signal that
is more tightly coupled to muscle dynamics than standard
neurological biosignals like sEMG, and it can be much more
precisely localized to specific structures of interest. Improved
understanding and modeling of this deformation and how
it relates to body dynamics could therefore revolutionize a
number of fields, including biosignal-driven prosthesis control,
studies of musculoskeletal pathology and motor control, and
graphical rendering of human motion.

Nevertheless, muscle deformation remains an under-utilized
and under-explored signal in the biomechanics community.
A primary reason for this lack of usage is that the observed
signals are both poorly characterized (due to complex internal
muscle and external contact dynamics) and prohibitively time-
consuming to annotate. In this work, we seek to address both
of these limitations by developing an automated pipeline
to generate 3D annotated muscle data from localized 2D
ultrasound scans via convolutional neural network (CNN)
segmentation.

The contributions of this paper are as follows:
• a novel CNN-based pipeline for generating 3D annotated

scans of bone and muscle structures, trained in a proof-
of-concept setting to annotate the humerus and biceps
brachii in a scan of the full arm of multiple subjects
under multiple conditions;

• a preliminary quantitative evaluation of neural network
architectures, and their possible modifications, for use
in the ultrasound tissue segmentation domain;

• all annotation code, including both trained networks and
training infrastructure for application to new tissues; and

• all generated arm ultrasound scans and their tissue
annotations, which encompass multiple subjects under
multiple loading conditions and joint configurations and
thus form a compelling data set with which to study
muscle deformation.

The latter two contributions have been made available for
general research use as part of the OpenArm project on
SimTK (https://simtk.org/projects/openarm).

II. DESIGN DECISIONS & RELATED WORK

Although there has been some exploration of muscle motion
in the graphics community [5–7], as well as preliminary
use of related imaging signals for device control [8, 9] and
measurement of musculoskeletal geometry [10], studies of
muscle deformation are sporadic and distributed across a
number of fields. As a result, there is little consensus on
which specific deformation signals are most informative of
musculoskeletal dynamics, and studies that use the signals



are largely restricted to black-box models that yield little
scientific insight.

In an attempt to disambiguate these informative signals, a
preliminary study on a single individual — which generated
the first OpenArm data set — showed the existence of
quantifiable muscle deformation with changes in both muscle
force and kinematic configuration, as well as the substantial
degree to which measured variation changes based on the
region of the muscle observed [4]. These findings support
the necessity of studying deformation throughout the full
muscle volume, but cannot be generalized without increasing
the subject cohort; because manual annotation of muscle
volumes is prohibitively time-intensive, such a study has not
yet been possible.

This paper directly addresses this segmentation challenge
via an automated framework to generate 3D annotated scans
of bone and muscle structures from localized 2D ultrasound
data. While the pipeline we present could easily be re-trained
for various tissue segmentation tasks, we here present a proof-
of-concept application to upper-limb muscle deformation with
the immediate goal of generating the next OpenArm data set.
We argue for both the importance of this data set and our
specific framework design decisions in the subsections below.

A. The Case For Full-3D Deformation Imaging
Although muscle deformation can be observed in one or

two dimensions (e.g., muscle thickness or cross-sectional area
changes, respectively), there do not exist models that can
translate these observations into clinically-relevant quantities
like stiffness, activation, and force output. A few models exist
in the graphics community [5–7], but none (to our knowledge)
have been validated against in vivo human data. Internal
muscle dynamics are complex and largely unobservable;
extending micro- or mezzo-scale biological models of muscle
fibers [11, 12] to macro-scale deformation phenomena would
require an immeasurably precise knowledge of both motor
unit distribution and contact dynamics of the surrounding
tissues. Musculoskeletal geometry also varies substantially
across individuals in ways that significantly impact system
dynamics [13, 14], and the dominance of tissue contact effects
means that deformation study is largely restricted to in vivo
— rather than ex vivo — study.

This complexity of muscle dynamics has meant that
the most successful macro-scale dynamics models are phe-
nomenological — i.e., models constructed from data using
system identification techniques rather than grounded in a
known biological process. (The most widely-adopted example
is perhaps the Hill model [15].) We argue that muscle
deformation could benefit from similar phenomenological
modeling, which requires careful and principled observation
of the muscle in all three dimensions across all domains
we hope to describe (namely, the variation in shape during
both kinematic and activity changes, generalizable across
individuals).

B. Segmentation Targets & Conditions: Biceps Brachii &
Humerus under Varied Loading & Joint Angle

We focus on a limited number of tissue structures — the
biceps brachii and the humerus — as a concession to the time-
intensive nature of 3D data collection. (Generating scans of an

individual under multiple configurations is a time-consuming
process, as is generation of — largely manual — ground
truth segmentation validation data.) All scans are collected
under static, though loaded, conditions; we hope to expand
the work to encompass full dynamic models in the future
with the insights gained during static study.

We target these structures for two primary reasons. First,
the two structures are representative of the tissue segmentation
challenge in that they have significantly different appearance
and properties (e.g., different elasticity properties, tissue-
specific artifacts like bone shadow); successful segmentation
of these structures thus constitutes strong evidence that
segmentation of other muscles and bones would be successful
using similar methodologies. Second, limiting the number of
structures examined allows us to tractably perform segmenta-
tion across subjects and under changes in loading condition
and kinematic configuration. The generated scans — of both
the rigid humerus, which can be used for alignment, and the
deforming biceps — therefore constitute a data set that will
allow for unprecedented exploration of muscle deformation
models across multiple individuals under multiple conditions.

C. Imaging Modality: Localized 2D Ultrasound

To generate 3D tissue scans, MRI is perhaps the most
obvious imaging modality and has been used in prior
studies of muscle motion [16]. However, limited bore size
makes scanning under natural arm configurations difficult
or impossible, and long scan times make collecting data
under multiple conditions prohibitively expensive and time-
consuming. This is especially true when scanning under
loaded configurations, as muscle fatigue may significantly
influence the observed deformation signal.

Instead, we collect 3D scans via sweeps of a 2D brightness
mode (B-mode) ultrasound probe — a technology that is
cheaper, better studied, and more readily available than
3D ultrasound — whose position is spatially registered via
motion capture. This technique has been widely used in both
human- and robot-guided ultrasound imaging for surgical [17]
and exploratory [18, 19] applications, and comprehensive
tools for scan generation are widely available [20]. While
the system is vulnerable to significant ultrasound-specific
artifacts, including bone shadow and imaging of the surface
gel, structures of interest (bone surfaces, muscle fascia, etc.)
are readily visible. Moreover, the comparatively short scan
time and unrestricted workspace permit numerous scans of a
single subject.

D. Segmentation Approach: Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a promising
tool in many medical imaging domains [21], including
echocardiogram annotation [22], brain lesion segmentation
[23], and localization of organ structures [24]. In this work,
we adapt existing CNN-based methods to segment our tissue
structures of interest, the humerus and the biceps brachii.

On a conceptual level, this problem is well suited to a
deep learning approach. Rules for segmentation are difficult
to enumerate a priori (due to both the modality-specific
artifacts mentioned above and the varied geometric behaviors
of different tissue structures, which make classical registration



TABLE I
VOLUMETRIC DATA COLLECTION CONDITIONS

Manipulated Factors Levels‡

θ elbow flexion angle 0◦, 30◦, 60◦, 90◦

LC elbow load condition fully supported (FS)
0% MVC (P0),
10% MVC (P1),
30% MVC (P3),
50% MVC (P5)

‡Data were collected from 10 subjects at each of the 4 flexion angles and 5
loading conditions listed above in a factorial manner, for a total of 20 scans
per subject. Additional data were collected from a single elderly subject at
30◦ and 60◦ flexion angles (all loading conditions) and 0◦ and 90◦ (FS
only), for a total of 12 scans. Note that fully supported (FS) trials occurred
while the arm was held in position by the experimental jig (i.e., to measure

“pure” kinematic deformation), while the latter 4 loading conditions denote
percentages of maximum voluntary contraction (MVC) level.

approaches difficult); at the same time, the domain is well-
specified and highly constrained, such that generating domain-
spanning training data is a tractable problem.

As discussed in Section IV, we find that CNN-based
segmentation significantly outperforms classical registration-
based approaches in both quantitative segmentation accuracy
and qualitative manual cleanup time.

III. METHODS

In the following section, we outline our methods for both
data set collection and CNN-based segmentation.

A. Data Set Collection

Volumetric data of the full anterior surface of the arm were
collected from 10 individuals under 4 kinematic configurations
(i.e., elbow angles) and 5 subject-specific loading conditions
in a full factorial manner, with factors and levels as listed
in Table I. Collection methods are largely those used in
the generation of the first OpenArm data set [4], aside
from updates to subject demographics, posture, and loading
conditions, as noted below.

1) Subject Biometric Data & Consent: Data were collected
from the right arm of 10 subjects (6 male, 4 female, all
right-handed, age 21.4±2.46, mass 66.9±10.1 kg, height
1.72±0.0876 m, body mass index 22.5±2.63).∗ All subjects
were healthy, with a wide variety of exercise regimes and
body types. An incomplete set of scans, as noted in Table I,
was collected from an additional elderly subject (female, right-
handed, age 85, mass 61.2 kg, height 1.52 m, body mass index
26.4) for preliminary evaluation of generalizability across age
groups. The study protocol was approved by the University of
California Institutional Review Board for human protection
and privacy, under Protocol ID 2016-01-8261. Each subject
was first informed of the experimental procedure and written
informed consent was obtained.

2) Data Collection: During data collection, the test subject
sat erect in a low stadium chair, with legs comfortably
extended and right arm extended laterally from the body
at a 90 degree shoulder abduction angle. The forearm was
fully supinated, with the upper arm supported at the distal
end of the humerus, as shown in Figure 1. Scans were then
collected with the subject’s elbow held statically at each of

∗Statistics are reported as mean ± standard deviation.
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Fig. 1. Experimental setup for the collection of full-arm upper-limb
morphology data under multiple elbow angles and loading conditions (shown
here at a 30◦ angle of elbow flexion under FS (top) and P1 (bottom) loading
conditions). Setup includes ultrasound probe (a) (with attached active motion
capture markers (b) used for spatial tracking); force/torque sensor (c), held
statically in place by KUKA LBR iiwa 14 R820 robot (d) and used by the
subject via real-time visual feedback (e) to maintain constant force output
during loaded trials; mechanical jig (f) used to support the elbow (during
all trials) and the forearm (during FS trials, top); and real-time ultrasound
and motion capture data (g) for continuous system status monitoring.

the 4 angle values listed in Table I (as measured from full
extension) under 5 loading conditions (fully supported by a
jig at the wrist and unsupported while pressing upward on
a force-torque sensorized handle with 4 prescribed levels of
force), for a total of 20 trials. Subjects wore a brace to limit
wrist flexion force and more completely isolate the elbow.

Loading conditions were selected for each participant based
on the subject’s maximum voluntary contraction (MVC)
value. To measure this MVC value, subjects were asked
to press upward on the handle with maximum possible
force, then hold for several seconds, then release. Subjects
performed this sequence twice, both at full elbow extension,
and the maximum overall force value was recorded as MVC.
(Empirically, this value varied substantially across subjects,
with mean and standard deviation 66.1±28.8 N for the 10
primary subjects tested.)† To allow subjects to maintain a
given force for the several minutes required to generate a
full 3D scan, force conditions were chosen as 0, 10, 30,
and 50 percent of the MVC value. Note that the same
MVC value, and thus the same force conditions, were used
for all angle conditions for the same subject, to allow for
development of models explicitly relating muscle deformation
to force. Collecting this value at full extension — the angle
at which muscles are weakest [25] — ensured that subjects
could maintain the forces required under all tested conditions.
Subjects maintained the prescribed force during each trial
by matching visual feedback from the attached force/torque
sensor (ATI Axia80, ATI Industrial Automation, Apex, NC,
USA) to a marked goal value on a real-time series plot, as

†This sequence was performed at 30◦ of extension for the single elderly
subject to avoid hyperextension injury, at which the measured MVC was
42.5 N.



shown in Figure 1. All subjects were able to consistently
maintain this value within several newtons.

During each trial, ultrasound images were collected using
a portable commercial ultrasound scanner (eZono 4000,
eZono AG, Jena, Germany) equipped with a 3-12MHz linear
transducer (L3-12 NGS, eZono AG, Jena, Germany) by an
experienced operator in the same manner as those of the first
OpenArm data set [4]. As in previous work, the machine
was configured to collect B-mode data at a depth of 4 cm,
with a 3.8 cm transducer footprint, and the 2D ultrasound
data was spatially localized using a PhaseSpace active motion
capture system (PhaseSpace Inc., San Leandro, CA, USA) and
calibrated both spatially and temporally using the open-source
PLUS calibration toolkit [20]. Scans were again streamed
to an external computer at a rate of 30 fps through an
OpenIGTLink server [26] and reconstructed using the volume
reconstruction application provided by the PLUS toolkit.

The full experimental setup is shown in Figure 1, and
representative volumetric data can be seen in Figure 2 as the
spatial intensity map from which volumes are segmented.

B. Candidate Segmentation Architectures & Modifications
To segment the humerus and biceps brachii structures from

the generated scans, we explored the following neural net
architectures and data augmentation techniques. All networks
were trained in Tensorflow [27] using the Adam optimizer
[28] and a cross-entropy loss function on a custom-built
desktop machine with an INTEL Core i7-5820K six-core
CPU and an NVIDIA Titan Xp GPU. Hyperparameter values
and full architecture details have been made available with
code release.

1) Baseline Architecture: 2D U-Net: Although our objec-
tive was to generate 3D scans, we chose the 2D U-Net [1]
as our baseline segmentation architecture, which we applied
to axial slices of the full upper-arm volume; each slice of
each test scan was then predicted individually to generate full
volumetric predictions. The U-Net was designed to perform
well when trained on relatively small data sets and has been
widely applied to various biomedical image segmentation
tasks [22, 29], and is more computationally efficient than
many of its 3D counterparts. All examined networks built
upon the original U-Net architecture, with one additional
concatenation block (corresponding to four additional 3x3
convolutions, one additional 2x2 max pooling operation, and
one additional “up-convolution”).

2) Data Augmentation: To generate additional training
data without prohibitively time-consuming manual annotation,
we artificially increased the size of our training data set via
both rotational and elastic deformation, a useful and common
practice in neural network training when comprehensive data
is not available [30]. Specifically, we generated additional
scans through arbitrary rotation and random elastic deforma-
tion [31] and trained networks both with and without this
augmented data, as noted in Section IV and Table II.

3) Baselines/Controls for Comparison: We evaluate the
neural network approaches against a classical registration-
based approach in which the tissue structures from one scan
are mapped to another by finding the optimal transformation
between the two spatial intensity maps. Specifically, we
compare the methods above with both pure rigid registration

(as a simple baseline) and a set of sequentially higher-
degree-of-freedom transformations (rigid, affine, and B-spline-
parameterized) in which each transformation is used to
initialize the next registration (as a more complex baseline
that better represents the upper limits of classical registration’s
efficacy). Optimal transformations were calculated using the
SimpleElastix image registration library [32]; transformation
quality was evaluated at each optimization step using the
mutual information criterion. Manual translation was per-
formed prior to automated registration to better align the
scans, and sensitive hyperparameters were tuned via grid
search to further optimize the results. Baseline registration
code and associated hyperparameter values have been released
with the rest of the OpenArm code base.

C. Generation of a Ground-Truth Data Set
To train and evaluate the segmentation pipeline across

kinematic configurations, loading conditions, and subjects,
we manually segmented full-scan volumetric data for the
following subjects:
• Sub1 – all angles and loading conditions (20 scans)
• Sub2 – all loading conditions at 30◦ (5 scans)
• Sub3 & Sub4 – single scans at 30◦, FS (1 scan each)

Scans were selected to allow for comparison across variables
of interest while remaining tractable. Each scan required
approximately 10–12 hours of expert annotation time.

IV. EXPERIMENTS & RESULTS

The objectives of our investigations into neural network
architectures were twofold: first, we sought a network that
could reliably generate annotations across a variety of subjects
and configurations; second, we aimed to derive principles to
guide future architecture design in similar domains.

Two major factors influenced neural network performance:
use of data augmentation and selection of training data. While
a full factorial analysis under all possible augmentations
and training data sets was intractable, we tested both the
augmentation types above and various promising sets of train-
ing data (incorporating single or multiple angle conditions,
loading conditions, and subjects) in a principled manner,
in both isolation and combination, as outlined in Table II.
Networks were restricted to using at most 500 slices of
manually segmented data to allow fair comparison across
training strategies. For networks in which multiple scans of
training data were used, these 500 slices were distributed
uniformly at random across scans. Up to 1000 slices of total
augmented data were used, again distributed uniformly at
random across augmented scans, to maintain tractable training
time. Of these slices, 5% were reserved for validation at each
epoch and 15% for final testing.‡ Networks were trained
for 40 epochs — after which, empirically, they had reliably
converged, as shown in Figure 3 — and the epoch with best
performance was selected for comparison.

The performance of these models under various conditions
is shown in Table II, and example qualitative segmentation
data from select architectures are shown in Figure 2.

‡Segmentation accuracy on this test data was used internally to confirm
that networks were not overfitting; in this paper, we instead report accuracies
across new 3D scans not used in training, as generalization across conditions,
rather than across slices of the same 3D image, is of primary interest.
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Fig. 2. Exemplar volumetric data, as segmented manually (“Ground Truth”), via optimized classical image registration (RANR), and via neural network,
unmodified (U-NET), using elastic deformation data augmentation (U-NET+EA), and using an augmented multi-subject data set (Multi-Subject U-NET+EA).
Data used for RANR were ground truth values of (Sub1, 30◦, FS); data for training the optimized neural networks are those described in Section IV and
Table II. Data were trained, tested, and predicted only on the upper part of the arm, above the elbow; raw lower-arm intensity maps are provided for context.
Although superficially smooth and well-formed, RANR segmentation poorly localizes biceps and humerus (a), resulting in poor segmentation accuracy; in
contrast, neural network methods perform reliably along the middle section of the biceps (b) but segment more poorly near the ends of the structure (c).
Adding elastic deformation augmentation data generally helps smooth the data and improve accuracy (d), though many artifacts remain. Note that Sub2
Multi-Subject U-NET prediction (e) shows a scan used in network training; its high level of accuracy thus represents network memorization, and the scan is
presented for completeness only.



TABLE II
SEGMENTATION ACCURACY

ARCHITECTURE / STRATEGY ACCURACY (IoU, Pixel Accuracy)
same angle, new angle, same angle, same angle,
same force, same force, new force, same force,
same subject1 same subject2 same subject3 new subject4

RR (rigid registration) 0.431, 0.980 0.320, 0.970 0.537, 0.985 0.244, 0.953
RANR (rigid-affine-nonlinear hierarchical registration) 0.722, 0.991 0.545, 0.980 0.450, 0.980 0.386, 0.960
U-NET (unmodified U-Net [1]) 0.875, 0.996 0.593, 0.982 0.604, 0.988 0.422, 0.961
U-NET+RA (U-Net + rotational augmentation) 0.929, 0.998 0.560, 0.984 0.464, 0.986 0.393, 0.971
U-NET+EA (U-Net + elastic deformation augmentation) 0.950, 0.999 0.677, 0.988 0.573, 0.989 0.533, 0.978
U-NET+RA+EA 0.936, 0.998 0.577, 0.984 0.544, 0.988 0.499, 0.978
Multi-Angle U-NET 0.886, 0.997 0.691, 0.989 0.614, 0.989 0.470, 0.972
Multi-Angle U-NET+EA 0.906, 0.997 0.717, 0.989 0.651, 0.990 0.523, 0.975
Multi-Force U-NET 0.885, 0.997 0.617, 0.985 0.770, 0.994 0.452, 0.972
Multi-Force U-NET+EA 0.902, 0.997 0.682, 0.988 0.793, 0.994 0.519, 0.977
Multi-Subject U-NET 0.884, 0.997 0.657, 0.987 0.536, 0.988 0.885, 0.995
Multi-Subject U-NET+EA 0.908, 0.998 0.687, 0.989 0.565, 0.989 0.909, 0.996

RR, RANR, U-NET, U-NET+RA, U-NET+EA, and U-NET+EA were all trained on (or mapped from) the single Sub1 scan at 30◦ and FS conditions, with
and without augmented data from the same scan(s) as noted. Multi-Angle U-NETs were trained on Sub1 scans at all angle conditions and FS loading;
similarly, Multi-Force U-NETs were trained on Sub1 scans at 30◦ and all force conditions, and Multi-Subject U-NETs were trained on all subjects at 30◦
and FS conditions. Note that grayed values constitute network “memorization” — i.e., predictions are calculated over data included in network training.
These values are presented as baselines for the maximum performance we expect to achieve from a given strategy.
1 Accuracy on Sub1 scan at 30◦ angle and FS loading conditions.
2 Mean accuracy on Sub1 scans at 0◦, 60◦, and 90◦ angle and FS loading conditions.
3 Mean accuracy on Sub1 scans at 30◦ angle and P0, P1, P3, and P5 loading conditions.
4 Mean accuracy on Sub2, Sub3, and Sub4 scans at 30◦ angle and FS loading conditions.
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Fig. 3. Training error for all reported network architectures over 40
epochs, over which networks reliably — if sometimes messily — converged.
Accuracy values reported in Table II and predictions shown in Figure 2
are computed from the minimum-loss epoch network for each respective
architecture.

A. Registration vs. CNN-Based Methods

Quantitatively, as shown in Table II, neural networks
perform almost uniformly better than registration-based
methods in terms of both intersection-over-union (IoU) values
and overall pixel accuracy (calculated as the total fraction
of correctly classified voxels). Registration is particularly
inadequate when segmenting new subjects. In addition, as
shown in Figure 2, the sources of this error are fundamentally
different. Registration-based segmentation generates well-
formed tissue structures, but these structures are significantly
misaligned, so errors are distributed along the length of the
scan; in contrast, neural network methods perform well in
the central belly of the muscle, but struggle with endpoints,
such that errors are concentrated at the top and bottom
of the muscle. Manual error correction is thus much more
time-efficient on neural-network-segmented scans, as a much
smaller subset of slices must be corrected. Alternatively,
analysis can be restricted to the center of the muscle with a

reasonable expectation of data reliability. This difference in
error type also suggests future work in ensemble approaches
that incorporate the successful aspects of each strategy.

B. Elastic Deformation Augmentation
The augmentation of the training data set with elastically

deformed scans substantially improved performance in most
tested cases, suggesting that this method of data augmentation
is useful in tissue annotation. In fact, as shown in Table II,
a U-Net trained on a single scan along with the elastically-
augmented version of that scan (U-NET+EA) performed
almost as well on scans at new angles as a network trained
on multiple angles (Multi-Angle U-NET). Gains across force
conditions and subjects were more modest, but elastic augmen-
tation still showed improved performance as compared with
unaugmented counterparts. Qualitatively, elastic augmentation
seems to sharpen scans and and remove some artifacts, as
shown in Figure 2.

The addition of rotationally augmented data did not
improve performance; in fact, performance was diminished
across all tested categories, most likely because both test and
training scans were collected at similar poses.

C. A Note on Multi-Subject Training and Performance
To effectively scale up muscle deformation analysis requires

generalization to new subjects. While neural network segmen-
tation performed reasonably well in this respect, considering
the small number of scans seen — even an unmodified U-Net
trained on a single scan successfully segmented the middle
portion of most subjects’ biceps and humerus — performance
remains significantly lower than when generalizing across
angle or force conditions for the same subject. More explicitly,
a network trained on multiple subjects performs better on
new angles and force conditions than a network trained on
multiple angles or force conditions performs on new subjects;



thus, our objective of multi-subject data sets will be best
served in the future by focusing on generation of training
data across multiple subjects rather than multiple angle or
force conditions. In the future, we will continue to experiment
with networks trained on combinations of these variables to
further enhance performance.

V. CONCLUSIONS & FUTURE WORK

The optimized U-Net-based segmentation pipeline de-
scribed in this work was used to generate the OpenArm
2.0 data set, which has been released to SimTK along with
our optimized networks and generating code. Future releases
of the data set will be manually cleaned to maintain accuracy
along the full length of the tissue structures.

OpenArm 2.0 represents the first multi-subject multi-
condition annotated muscle deformation data set, which we
will employ in future work to validate existing muscle de-
formation models — both data-driven and biology-motivated
— and to develop new ones. Automating the segmentation
process will also allow us to greatly expand the data we
examine, which will in the future include multiple muscles
under both static and dynamic conditions, as well as greater
variety in subjects’ age and pathology. We emphasize that
this data set is our primary contribution, and we hope others
will use it to expand the muscle modeling field.
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