
OpenArm 2.0:

Contributions Target Application Domains
•	Novel neural-network-based pipeline for 

segmentation of 3D muscle and bone structures 
from localized 2D ultrasound data of the human arm

•	The OpenArm 2.0 data set, the first factorial set 
of multi-subject, multi-angle, multi-force scans 
of the arm with full volumetric annotation of the 
biceps and humerus
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Automated Segmentation of 3D Tissue Structures for 
Multi-Subject Study of Muscle Deformation Dynamics

Data Set Collection & Specifications

•	Musculoskeletal simulation: measurement of individual muscle forces
•	Assistive device control: extraction of multiple robust control signals 

for high-DoF prosthesis / exoskeleton control
•	Diagnosis / rehabilitation: improved measurement and understanding 

of musculoskeletal deficiency
•	Graphics / animation: enhanced rendering of muscle shape changes 

during movement

DOWNLOAD

Download all code 
and data at 
simtk.org/

projects/openarm

Finalized Tissue Volumes

{Raw Data Collection
via Ultrasound & Motion Capture

Volumetric Reconstruction
via PLUS Toolkit [1]–[3]

Tissue Segmentation
via modified U-Net [4]

Final Data Processing Pipeline

Data were collected from

10 subjects (+1 partial) at

•	 4 elbow angles (0°, 30°, 60°, 90°)

•	 5 force conditions (“fully supported”, 
0/10/30/50% MVC)

automated annotation performed for all scans

ground truth annotation performed for 1 full + 
2 partial subject data sets

20 scans / 
subject

Automated Tissue Segmentation

G
RO

U
N

D
 T

RU
TH

(M
an

ua
l)

BA
SE

LI
N

E
(R

eg
is

tr
at

io
n)

O
U

R 
M

ET
H

O
D

(C
N

N
)

Our CNN-based segmentation method results in more accurate tissue 
segmentation than baseline registration-based methods, especially when 
networks are trained on elastically augmented data [8] from multiple subjects.

Registration-based methods result in significant errors along the entire length 
of the muscle, while our CNN-based methods reliably segment the muscle belly, 
with errors primarily at muscle ends. Our method thus results in faster manual 
cleanup time when it is necessary for applications requiring higher accuracy.

Segmenting new subjects remains more difficult than segmenting new angle and 
force conditions; thus, we are actively working to improve accuracy by training 
subject-specific networks on more comprehensive data sets.

Segmentation Accuracy by Strategy

BASELINE
(Registration)

OUR 
METHOD

(CNN)

Manual Annotation
in ITK-SNAP [6]

Nonlinear Registration
via SimpleElastix [7]

CNN-Based Segmentation
via U-Net [4]
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We are building a principled suite of models that make varying trade-offs between collected data and 
(possibly unreliable) literature values in a quantifiable manner, ranging from “black box” to “white box”.

CORE HYPOTHESIS: Individual muscle force can be inferred from muscle 
deformation, which can be detected via ultrasound. This relationship 
can be measured and quantified because changes in muscle shape reflect 
changes in tendon length, and therefore tendon stiffness, the mechanism by 
which force is imparted to the skeleton.
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Novel Input: 
Muscle Deformation

Desired Output: 
Individual Muscle Force

Full 3D intensity maps of the anterior surface of the arm were assembled from 2D ultrasound data (localized via motion 
capture) using an adapted version of the first OpenArm experimental protocol [5].

Several improvements were made, including real-time force tracking and visual feedback to enable scan collection under 
arbitrary, repeatable force conditions.

BEST

Validation Accuracy

WORST

Training Accuracy

“memorization baseline”


