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Abstract— Despite the utility of musculoskeletal dynamics
modeling, there exists no safe, noninvasive method of mea-
suring in vivo muscle output force in real time — limiting
both biomechanical insight into dexterous motion and intuitive
control of assistive devices. In this paper, we demonstrate that
muscle deformation constitutes a promising, yet unexplored
signal from which to 1) infer such forces and 2) build novel
device control schemes. Through a case study of the elbow
joint on a preliminary cohort of 10 subjects, we show that
muscle deformation (specifically, thickness change of the bra-
chioradialis, as measured via ultrasound and tracked via optical
flow) correlates well with elbow output force to an extent
comparable with standard surface electromyography (sEMG)
activation during varied isometric elbow contraction. We then
show that, given real-time visual feedback, subjects can readily
perform a trajectory tracking task using this deformation signal,
and that they largely prefer this method to a comparable
sEMG-based control scheme and perform the tracking task
with similar accuracy. Together, these contributions illustrate
muscle deformation’s potential utility for both biomechanical
study of individual muscle dynamics and device control, in
a manner that — thanks to, unlike sEMG, the localized
nature of the signal and its tight mechanistic coupling to
output force — is readily extensible to multiple muscles and
device degrees of freedom. To enable such future extensions,
all modeling, tracking, and visualization software described in
this paper, as well as all raw and processed data, have been
made available on SimTK as part of the OpenArm project
(https://simtk.org/projects/openarm) for general re-
search use.

I. INTRODUCTION

Despite decades of study, noninvasive, in vivo, real-time
measurement of muscle forces remains an open problem in
the biomechanics community. Without good models of muscle
force output during natural movement, our understanding of
how humans execute dexterous motions is fundamentally
limited, as is our ability to safely modify or replace this exe-
cution using assistive devices and to accurately characterize
and treat musculoskeletal pathology.
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An earlier version of this paper was presented at the 2020 IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomecha-
tronics (BioRob) and was published in its proceedings as “Muscle
deformation correlates with output force during isometric contraction,”
https://doi.org/10.1109/BioRob49111.2020.9224391 [1].

Historically, muscle forces have either been computed
using full-body modeling frameworks like OpenSim [2] and
AnyBody [3] — which account for little physiological vari-
ation, enable only limited real-time computation, and make
strong optimization-based assumptions about force distribu-
tion across synergists — or using surface electromyography
(sEMG), a sensing modality that measures the neurological
input to the musculoskeletal system, not the resultant output
forces, and fundamentally does not allow for direct muscle
force inference [4]. While these methodologies have resulted
in impressive advances in motion modeling and device control,
our ability to both understand and replicate dexterous motions
— particularly for the upper limb — remains severely limited.

As a complementary technology to optimization-based
modeling and sEMG measurement, we propose muscle
deformation (as measured via ultrasound) as a class of signals
that is both more directly representative of muscle output
force and easier to spatially localize than sEMG. In an early
version of this work, we showed that several simple measures
of muscle deformation (cross-sectional area, thickness, etc.)
correlate well with output joint force, and are readily trackable
via optical flow [1]; here, we leverage a novel real-time
tracking and visualization system to corroborate those findings
on an expanded subject cohort and a refined collection of
elbow flexion trajectories. We also present a proof-of-concept
system for real-time trajectory tracking with the deformation
signal, representing an important step toward deformation-
based device control.

The contributions of this paper are as follows:
• a novel experimental platform, consisting of both

networked hardware and real-time optical-flow-based
muscle contour tracking software, that enables the
simultaneous, time-synced collection and display of joint
force, muscle activation, and muscle deformation data,
facilitating both force–deformation–activation correlation
analysis and the execution of gamelike trajectory tracking
tasks;

• a novel, quantitative description of the correlation
relationship between deformation of the brachioradialis
muscle and output force at the elbow joint during
isometric contraction, shown to be consistent with
simultaneous sEMG measurements of biceps brachii
activation, in a preliminary cohort of subjects;

• evidence that this preliminary subject cohort can inten-
tionally modulate this muscle deformation to perform a
trajectory tracking task, shown to compare favorably with
an sEMG-based controller in an evaluation of tracking
performance and preferences; and
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• an open-source time series data set, including simultane-
ous ultrasound, sEMG, and elbow force data, collected
during both correlation and trajectory tracking trials, for
future study and modeling.

The data and software associated with all of the above
contributions have been made available for general re-
search use as part of the OpenArm project on SimTK
(https://simtk.org/projects/openarm), which
also hosts complementary research and data sets examining
3D (static) muscle shape under various conditions [5, 6], as
well as data and code from early versions of this work [1].

II. MOTIVATIONS & RELATED WORK

Although finding a noninvasive measure of individual
muscle forces remains a core challenge inhibiting our under-
standing of human motion [7], no single sensing modality or
analysis framework has emerged as a dominant measurement
solution. In the context of current biomechanics research, we
first argue that muscle deformation constitutes a promising
signal from which to infer these muscle forces. We then
introduce and motivate 1) this paper’s preliminary data set
as a source of initial insights into the time series behavior of
deformation, and 2) our selected trajectory tracking task as a
first step toward physical device control.

A. Deformation as a Measure of Output Force
While the human musculoskeletal system is highly complex,

geometrically irregular, and dominated by the physics of
various nonlinear materials, the core mechanism underlying
human movement is straightforward: muscles ratchet together
(largely via the actin-myosin cross-bridge cycle [8], though
other proteins like titin are thought to play a role as well
[9]), inducing a length change along the line of action, which
pulls the attached (roughly elastic) tendons, which then impart
the force to the skeleton. Under the (mild) assumption that
muscles are isovolumetric [10, 11], this length change by
definition induces a shape change, or deformation, in the
activated muscle.

Several isolated studies have established a correlation be-
tween muscle activation and shape change [12–17], including
our own previous work examining the full 3D extent of
the biceps brachii under static (but kinematically varied)
elbow loading [5]. This prior study showed evidence that
such deformation — measured as muscle cross-sectional
area (CSA) or thickness changes — is readily observable via
ultrasound, though the appearance of the muscle cross section
varies drastically with both sensor location and kinematic
configuration. This signal complexity is the result not only of
the nonuniform material properties of a given muscle–tendon
unit, but of its contact dynamics with surrounding structures.
This complexity means that interpreting the deformation
signal is not always obvious: while some locations along the
arm show a reliable CSA or thickness increase corresponding
to increased output force, others may show a decrease
or no reliable change, and this varies based on which
precise parameterization of deformation is used. Despite these
challenges, the deformation signal has several advantages as
compared with electrode-based measures like sEMG: first, it
is localizable and thus attributable to a particular muscle, and

second, it can be measured from both deep and superficial
muscles (given, for example, an ultrasound transducer with
sufficient depth resolution).

A simpler approach is to measure the force-generating
muscle–tendon unit length change directly, in either the
muscle or the tendon [18–20], or to measure muscles’
[21] or tendons’ [22] vibrational behavior to infer strain
(“mechanomyography”). These approaches are complemen-
tary, but limited: several muscles of interest may be attached
to the same tendon, and these attached tendons — or, in
many cases, aponeuroses — may have complex geometry
that makes establishing a single “length” value difficult or
impossible, and vibrational measurements are often corrupted
by ambient noise and difficult to localize. The muscle
deformation we examine in this paper can be thought of
as an amplified, higher-dimensional version of this length
signal, which intrinsically incorporates additional information
about factors like contact dynamics and fascia elasticity.

B. Brachioradialis Measurement via Ultrasound for Proof-
of-Concept Force–Deformation Correlation

As an initial study of the force–deformation relationship,
we examine deformation of the brachioradialis (one of several
elbow flexors) and its relationship to elbow force output.
As in previous studies [5, 6], we focus on isometric elbow
flexion as a proof-of-concept motion, as it is a comparatively
simple joint (with only one degree of freedom and only a
few muscles) that is relevant to the upper-limb modeling
cases for which this research may be especially applicable.
Also as before, we measure this deformation via 2D B-mode
ultrasound, a technology that is safe, portable, and provides
a relatively clear image of the fascia between muscles.

To allow collection of time-varying data, we restrict
ourselves to a single 2D ultrasound frame collected from
the same location along the arm at all time points. We target
the brachioradialis for analysis because it is the smallest of
the elbow flexors and its cross-section largely fits within
the frame of a single ultrasound scan for many subjects
(unlike the biceps or brachialis, for which substantial portions
of the cross-section cannot always be captured in a single
frame under varied force conditions). Building on earlier
versions of this work [1], which identified cross-sectional
brachioradialis muscle thickness as a particularly force-
correlated and reliably trackable deformation measure (despite
the muscle’s comparatively small size as compared with other
flexors), we leverage this thickness signal both to evaluate
force–deformation correlation (section IV) and as our control
signal for performing trajectory tracking tasks (section V).

Note also that although the ultimate goal of this research is
to relate measures of muscle deformation to individual muscle
forces, for the purposes of this preliminary (noninvasive)
study, we restrict our analyses to net joint output force.* This
research is interesting precisely because there are no readily
available individual force measures with which to compare
our data, and we believe that the deformation–net-force corre-
lations presented here, along with the insights in section II-A

*In fact, our measured joint output force is itself an approximation
confounded by force contributions from other joints, as discussed in section
III-A, further limiting the scope of our claims.



regarding the physiological causes of deformation, constitute
a powerful case that this signal is a promising candidate
for individual muscle force measurement. In the future, we
aim to probe this claim both empirically (e.g., via invasive
animal study that enables muscle–tendon unit isolation and/or
comparison with tendon-tapping force inference methods [22])
and through enhanced modeling (e.g., fitting Hill-type muscle
models and examining their predictive power).

C. Real-Time Trajectory Tracking as a Proof-of-Concept
Control Task

Building on this muscle force–deformation relationship, we
examine the feasibility of leveraging the brachioradialis defor-
mation signal in a device control task. We see the deformation
signal as particularly promising due to its spatial localizability:
as discussed above, deformation is by definition attributable
to a particular muscle, providing both direct information
about muscle force output and theoretically allowing for the
simultaneous extraction of multiple independent signals from
both deep and superficial muscles to control different device
degrees of freedom in a straightforward manner.

Ultrasound-based (“sonomyographic”) control, while not
new [23–25], is underexplored: although preliminary con-
trol has been demonstrated on a single-degree-of-freedom
prosthetic hand [24], as well as on more complex devices
by leveraging learning-based image processing and gesture
classification [23, 25], these techniques have not seen wide
adoption, are rarely evaluated against state-of-the-art sEMG
control systems, and are inhibited by poor understanding
of the underlying musculoskeletal dynamics. This lack
of underlying biomechanical knowledge inhibits not only
generalizability, but device safety and efficacy: as we begin
constructing devices that physically modify human movement,
understanding the resultant musculoskeletal forces will be
essential both to avoid injury and to ensure that, for example,
rehabilitative devices induce therapeutic exertions.

Considering these safety and efficacy concerns, we demon-
strate a first step toward the use of deformation as a device
control signal with a proof-of-concept case study in which
subjects completed a trajectory tracking task by modulating
either ultrasound-measured deformation or sEMG-measured
activation. In addition to the preliminary evaluation of tracking
success and user preferences contained in this document,
we provide a full suite of contact force, activation, and
deformation data collected during these trials to the wider
community as a resource for ongoing study of the associated
neuromuscular dynamical relationships.

III. MUSCLE DEFORMATION & ACTIVATION TRACKING
SYSTEM

To accomplish both objectives of this paper — evaluating
force–deformation correlation during isometric contraction
at the elbow (section IV), then leveraging these signals
for control during a trajectory tracking task (section V)
— we developed a novel experimental platform to enable
simultaneous collection and optional real-time display of
joint force, muscle thickness (as measured via ultrasound),

and muscle activation (as measured via sEMG) during varied
isometric elbow flexion.†

This section details, first, hardware aspects of this system
that allow for collection of these data under consistent
kinematic conditions, and second, the signal processing
software used to extract, calibrate, display, and record these
signals over time.

A. Hardware Setup
The hardware platform was designed for data collection

from the right arm of a subject seated comfortably upright,
feet planted, right upper arm comfortably adducted (vertical),
elbow flexed 90◦, forearm fully supinated, with the elbow
supported by a static jig from below, as shown in Fig. 1. The
right wrist was firmly strapped into a brace mounted to a
6-channel force-torque sensor (ATI Mini45, ATI Industrial
Automation, Apex, NC, USA), which was in turn mounted to
the end effector of a 7-degree-of-freedom robot arm (KUKA
LBR iiwa 14 R820, KUKA AG, Augsburg, Germany).‡

Subjects pressed upward on this sensor to generate a measure
of “output joint force” at the elbow; while this measured
contact force was inherently confounded by contributions
from other linked joints, subjects were instructed to exert
force using only elbow flexion motion, and the wrist was
immobilized, with the force sensor attached near the proximal
edge of the palm, to isolate the elbow joint as much as
possible.

To gather muscle activation and deformation data, the
subject’s right arm was instrumented with an Arduino-driven
MyoWare sEMG system (Advancer Technologies, Raleigh,
NC, USA) set to a single consistent gain and a 3–12 MHz
linear ultrasound transducer (L3–12 NGS, eZono AG, Jena,
Germany) attached to its corresponding ultrasound unit
(eZono 4000, eZono AG, Jena, Germany). Surface EMG
electrodes (Red Dot 2560, 3M, St. Paul, MN, USA) were
placed in a differential configuration on the biceps brachii,
with the two signaling electrodes placed with 40 mm proximal–
distal center-to-center separation (adhesive edges abutting)
and the top electrode roughly centered on the lateral belly
of the muscle, and the grounding electrode placed on the
acromion. The ultrasound transducer was manually placed
perpendicular to the lower arm such that the brachioradialis
cross section was maximally in frame and held in place by
an adjustable foam and neoprene cuff.

Note that ultrasound and sEMG sensors were placed to
target different muscles: the brachioradialis and the biceps,
respectively. While this inherently limits any correlation
insights we might make between deformation and activation
values (i.e., our analyses should be understood in the context
of the multi-muscle elbow flexion motion, rather than state-
ments about the force–deformation–activation relationship
of an individual muscle), this configuration was chosen

†Note that the software aspects of this platform — contained in the
open-source release accompanying this paper — are agnostic to the particular
muscles and joints observed and could readily be adapted for study of other
joints.

‡Note that this robot remained static throughout all data collection, but
changing its configuration between subjects served as an easy manner of
re-placing the force-torque sensor in space to maintain consistent elbow
angle across differing subject physiology.
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Fig. 1. Experimental setup for the collection of time series force, ultrasound,
and surface electromyography (sEMG) data during constrained isometric
elbow flexion. Setup includes ultrasound probe (a) attached securely to user’s
forearm with cuff (b); surface electromyography (sEMG) electrodes (c); wrist
brace (d) through which subject transmits force to attached to force-torque
sensor (e), in turn held stable by KUKA robot (f); elbow stabilizing jig
(g); goal and sensor trajectory display (h) for real time visual feedback for
subject self-assessment; and real-time ultrasound thickness tracking data (i)
for continuous experimenter system status monitoring. This system allows
subjects to precisely follow a specified force trajectory to enable study of
force–deformation correlation under varied trajectory types (section IV) and
to perform trajectory tracking tasks using experimental deformation- and
activation-based signals (section V).

to allow simultaneous collection while preventing sensors
from physically interfering with one another (a challenge
due to the brachioradialis’s comparatively small size, which
— as discussed in section II-B — allowed more complete
deformation analysis but prevented simultaneous ultrasound
and sEMG recording). Earlier work [1] also found stronger
sEMG signals from the biceps than the brachioradialis, such
that this configuration provides a more competitive baseline
against which to evaluate deformation data in terms of both
strength of correlation and use as a control signal.

B. Signal Tracking & Display

During data collection, the subject faced a large monitor,
which displayed two or more signal streams: a time series
goal trajectory, and either force (to enable consistent force
output for correlation analysis), ultrasound-extracted defor-
mation/thickness (to evaluate the feasibility of deformation-
based trajectory tracking), and/or sEMG-extracted activation
(as a baseline against which to evaluate deformation-based
trajectory tracking control), each normalized to the subject’s
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Fig. 2. Still frame of optical-flow-based brachioradialis thickness tracking
system. Points were tracked along the superficial (red) and deep (blue) fascial
surfaces of the brachioradialis, and thickness was reported as the vertical
(superficial-to-deep, green-to-green) distance between the center (mean)
of each cluster. A line connecting each cluster center was also displayed
(magenta) to allow for easy observation of particle drift.

strength capabilities. Our methods for signal extraction,
calibration, and display are outlined below, and full details
can be found in the released codebase.

1) Tracking Muscle Thickness via Optical Flow: Drawing
on previous tracking successes [1], brachioradialis thickness
was tracked over time via the standard iterative Lucas–Kanade
method of optical flow estimation [26] as implemented in the
OpenCV Python library [27]. Specifically, at the start of each
trial, while the subject was instructed to remain still, 10 points
were manually selected along both the top and bottom (i.e.,
superficial and deep) surfaces of the brachioradialis muscle
fascia, forming two clusters of points. These points were used
to define the vertices of two polygons from which contours
were extracted [28]; these contour points, as shown in Fig. 2,
were then tracked over time (on a bilaterally-filtered version
of each image [29] to suppress speckle noise) at a best-effort
frame rate§ of 1 kHz, and the thickness value calculated at
each iteration as the vertical (superficial-to-deep) distance
between the mean location of tracked points in each cluster.

To prevent points from drifting away from the selected
surfaces (a frequent challenge in optical flow estimation), we
leveraged the knowledge that the fascial segment selected by
each point cluster should remain intact — i.e., points within
a cluster should remain at similar positions relative to each
other. Thus, during each iteration, if the average squared
distance from tracked points to their cluster center exceeded
a specified distance (here, 200 px2, or approximately 3 mm2),
all tracked point locations were reset to their initial locations.
In practice, these resets happened rarely for most subjects
and are noted in released data.

2) Signal Processing & Calibration: Force, ultrasound-
extracted thickness, and sEMG-measured activation were
sampled for both recording and display at a best-effort rate
of 1 kHz. Activation values (measured as the difference in
signal value across the two sEMG electrodes) were smoothed
via a 250-point (0.25 s) moving average filter.

§In practice, this frame rate was slightly slower due to delay associated
with image recording.



To normalize force, deformation, and activation signal
traces s(t) to a subject’s strength, at the beginning of each
trial, subjects were first instructed to remain still for several
seconds, then to press upward with maximum possible
contraction force for several seconds; mean minimum and
maximum signal values were then calculated over the final
200 samples (approximately 0.2 s) at each condition as smin
and smax, respectively.

Normalized signal traces s̄(t) were then calculated for both
display and recording as

s̄(t) =
s(t) − smin

smax − smin
.

During each trial, one or more of these normalized traces
s̄(t) was displayed alongside a goal trajectory, which the
subject was then instructed to track by modulating elbow
flexion force, as detailed in sections IV-A and V-A below.
Note that regardless of display, all goal, force, deformation,
and activation signals, both raw and processed, were collected
for all trials.

IV. CORRELATION OF MUSCLE DEFORMATION WITH
JOINT FORCE

In this section, we present preliminary data, collected via
the platform detailed above, indicating that brachioradialis
muscle deformation (i.e., thickness change) correlates with
output force at the elbow during varied isometric contraction
and is consistent with simultaneous sEMG data. We first
outline our subject cohort and collection procedure, then
present preliminary time series data alongside qualitative and
quantitative analysis of the force–deformation relationship.
Lastly, we comment on study limitations and how these
preliminary analyses suggest future research directions.

A. Data Set Collection

As an exploratory data set, simultaneous force, deformation,
and activation signals were collected from a preliminary
cohort of subjects using the platform described above in
section III as they tracked a specified elbow flexion force
trajectory with visual feedback. Details of this subject cohort
and collection procedure are outlined below.

1) Subject Biometric Data & Consent: Data were collected
from the right arm of 10 subjects (7 female, 3 male, 9 right-
handed, 1 left-handed, age 25.6 ± 0.966, mass 61.7 ± 10.5
kg, height 1.69 ± 0.0742 m, body mass index 21.5 ± 2.89),
hereafter denoted Sub1–Sub10.¶ All subjects were healthy,
with a wide variety of exercise regimes, body types, and
familiarity with nonstandard computer interfaces. The study
protocol was approved by the University of California
Institutional Review Board for human protection and privacy
under Protocol ID 2016-01-8261 (first approved 4 April 2016)
and written informed consent was obtained from each subject.

¶Statistics are reported as mean ± standard deviation. For additional
demographic data, broken down by subject, see the full open-source data
release.

2) Trial Specification: After being strapped into the data
collection system outlined in section III-A and instrumented
with all relevant sensors, each subject performed three 90 s
tracking trials (to enable preliminary analysis without impos-
ing extensive fatigue): one unstructured trial to familiarize
them with the system, followed by two trials intended for
correlation analysis, the latter of which is plotted and analyzed
below.

The initial familiarization trial — from which no actual
data was analyzed for publication — was designed to both fa-
miliarize subjects with the system and assure investigators that
all sensors were behaving as expected. After initializing the
thickness tracking system and performing min/max calibration
(as outlined in sections III-B.1 and III-B.2, respectively), the
subject’s monitor was set to display all three normalized force,
thickness, and activation traces, as well as the goal trajectory
to be used in future trials. Subjects were then instructed to
freely modulate elbow flexion to get a sense for how the
various signals changed with force output, though they were
not yet asked to perform the tracking task.

During the two data collection trials, the same tracking
initialization and min/max calibration was performed, but
this time, the subject’s monitor displayed only the goal and
normalized force trajectories. The subject was instructed to
match the force trace to the goal trace — scaled to the
subject’s force generation capability and detailed below —
by modulating isometric elbow flexion force.

3) Goal Trajectory Elements: To evaluate correlation
across various types of force exertion, both sustained and
quickly varying, the same 90 s goal trajectory containing
these varied elements and shown in Fig. 3 was used for
all trials. Specifically, the trajectory contained the following
elements in sequence:

• sustained flexion at 0.25, 0.5, and 0.75 of maximum
force capability, with intervening rest phases;

• a slow ramp in flexion from 0 to 0.75 of maximum
force capability, then a slow ramp back to 0, after briefly
sustaining;

• arbitrary, quickly varying step changes in flexion; and
• a sine wave ranging from 0.25 to 0.75 of maximum

force capability.
Force–deformation and force–activation correlation were
evaluated across both the entire trajectory and individual
elements, as detailed below.

B. Correlation & Evaluation
In the following analyses, we use the Pearson correlation,

applied directly to the synchronized data streams, to assess
the viability of using our candidate deformation measures to
infer output force, alongside or as an alternative to sEMG.
We first examine an illustrative time series, then discuss how
our assertions translate across across subjects and trajectory
types.

1) An Illustrative Time Series: Fig. 3 shows representative
trajectory data from a single trial (specifically, that of Sub1).
In this series, and in general, brachioradialis thickness
deformation correlates comparably with sEMG activation
(though this varies with both subject and trajectory type, as
discussed below).
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Fig. 3. Example time series data collected from subject Sub1 for force–deformation and force–activation correlation analysis, including output force (black,
solid), alongside specified goal trajectory (black, dotted), deformation (i.e., brachioradialis thickness change as tracked via optical flow, blue), and activation
(as measured via sEMG, orange). Subjects were able to track the specified force trajectory with little error, enabling controlled observation of a variety
of sustained and quickly varying force conditions, and both deformation and activation were shown to be highly correlated with output force during all
portions of the trajectory. Signal values are reported — as they were displayed — as a fraction of measured maximal value, as described in section III-B.2.

This exemplar illustrates two important data set qualities:
first, that subjects proved impressively skilled at following
goal trajectories given visual feedback, yielding both the
sustained and quickly varying signal types we sought for
comparison; and second, that while our optical-flow-based
tracking system exhibited some drift over time, thickness was
largely well-tracked for most subjects throughout the full 90 s
duration of each trial.

Lastly, this time series illustrates an artifact observed in
our ultrasound tracking data at all trials — namely, a “stair
step” quality not present in force or sEMG data, in which
values are sustained and then jump suddenly. We attribute
this quality to the limitations of our data collection system:
observed brachioradialis thickness changes were generally
less than 4 mm from relaxation to full exertion (and often
substantially smaller), corresponding to changes of fewer
than 30 pixels in our (relatively low resolution) ultrasound
image, resulting in choppy optical flow tracking that must be
accounted for in our analyses.

2) Correlation by Subject: Fig. 4 shows the strength of
deformation and activation correlation with force for each
of our 10 subjects. Though force–activation correlation is
higher than force–deformation for most subjects, the latter
shows consistent (moderate to strong) correlation across most
subjects, with many showing a correlation magnitude of
around 0.7 or higher — an even higher magnitude than that
found in earlier versions of this work [1] — even though
subjects vary significantly in terms of muscle morphology,
as illustrated in Fig. 5, suggesting a common underlying
biological mechanism.

At the same time, two subjects — Sub7 and Sub9 — fail
to show the same thickness–force correlation. While more
principled analysis is needed to tease out the exact reasons for
this lack of correlation, experimenters noted during collection
that the observed deformation appeared qualitatively different,
as illustrated in Fig. 5: unlike most subjects, for which vertical
(deep–superficial) expansion was observed, widening the
brachioradialis contour, these subjects showed substantial
lateral motion, in which fibers appeared to slide side to side,
but the deep and superficial fascial surfaces seemed to move
very little. Given that this different motion paradigm appeared
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Fig. 4. Correlation of muscle deformation (blue) and activation (orange)
signals with elbow output force across all subjects. Despite substantial
differences in morphology (illustrated below in Fig. 5), most subjects —
aside from Sub7 and Sub9, who displayed morphological quirks that resulted
in poor signal quality, as discussed in section IV-B.2 — showed moderate
to strong correlation between deformation and output force.

Fig. 5. Example ultrasound frames from an illustrative subset of subjects,
with tracked and annotated brachioradialis thickness, depicting no force (top
row) and high output force (bottom row) for each subject. While subjects’
morphology varies significantly, most subjects (like the pictured Sub1, Sub6,
Sub8, and Sub10) display a reliable thickness increase with output force,
while several (like Sub7) primarily display lateral motion, leaving thickness
uncorrelated with force output.

in multiple subjects, and could be the result of a quirk of
morphology, a function of sensor placement, or differing
elbow flexion strategy, we see other deformation measures
(e.g., localized fiber motion in any direction) as worthy of
future study.

3) Correlation by Trajectory Type: Generally, as shown
in Fig. 6, both deformation and activation correlate well with
force across all four trajectory types (sustained, ramp, step,
and sine, as outlined above in section IV-A.3), with activation
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Fig. 6. Correlation of muscle deformation (blue) and activation (orange)
signals with elbow output force across various trajectory types and in
aggregate, with noted standard deviation across subjects. Deformation remains
moderately to strongly correlated with output force for all examined trajectory
types, with slightly lower and more variable correlation during sustained
and sine trajectories that is likely the result of limitations in the optical flow
tracking system, as discussed in section IV-B.3.

showing indistinguishable, and high, levels of correlation
across all trajectory types. Force–deformation correlation
was particularly high for ramp and step conditions, though
lower and more variable for sustained and sine conditions.
Based on qualitative examination of the data, we theorize
that these lower values are the result of limitations in our
tracking software, rather than an underlying physiological
mechanism: specifically, we observe first, that under quick,
dramatic force/thickness changes like those at the start and end
of each trial, the optically tracked points fail to fully remain
on the fascia, and thus do not return to baseline, and second,
that these points generally drift over time, perhaps impacting
the final (sine) section of the trajectory most dramatically.

Nevertheless, deformation — even as measured by this
limited, drifting, proof-of-concept system, which we are
working to refine to address these issues — is consistently
correlated with output force, showing promise for use in
device control or motion analysis under both fast and slow
movement conditions.

C. Study Limitations & Future Directions in Force–
Deformation Modeling

The sections above constitute preliminary analysis on
a limited data set, which we aim to further expand with
targeted repeated trials (for more rigorous statistical analysis),
additional subjects (of varying age and ability), additional
force conditions (e.g., non-isometric, natural/unconstrained
motion), additional ultrasound views (e.g., longitudinal), a
more streamlined (and higher resolution) ultrasound probe
and support cuff to support collection of (less choppy)
ultrasound and sEMG data from the same muscle, and
an improved (e.g., multi-channel) sEMG system for more
equitable ultrasound comparison (especially important as we
begin to examine dynamic motions, during which electrodes
placed on the skin may slide relative to underlying structures).
Such enhancements will allow for expanded understanding
of the results above (including the impact of age on the
deformation signal) and of phenomena not yet explored (e.g.,
temporal and spatial sEMG–deformation relationships, the
impact of fatigue).

A further limitation of this correlation analysis is our
assumption that force, activation, and deformation signals
occurred simultaneously: we might have achieved better
correlation by accounting for the multi-millisecond electrome-
chanical delay expected between sEMG-measured activation
and output force [30]. We aim to incorporate this delay into
future correlation and modeling analyses (and even leverage
our data to study this delay, which is variable and remains
poorly characterized).

In addition to these data quality and modeling enhance-
ments, we also seek an understanding of the biological
mechanisms underlying our deformation measures. This is a
significant analytical challenge, as shown visually in Fig. 5’s
illustrative frames: a single muscle cross section, without
accompanying 3D shape data, is difficult or impossible
to interpret, and simple deformation measures like those
analyzed above barely scratch the surface of its architectural
nuance. Informed by the correlations we observe in this paper,
we are addressing these challenges from two complementary
perspectives. First, we are constructing and analyzing full 3D
muscle images to allow for improved interpretation of 2D
cross-sections, including what low-dimensional deformation
signals are most correlated with force and where they are best
observed relative to the underlying skeleton under different
kinematic configurations [5, 6]. Second, we are working to
track more sophisticated deformation signals, beyond the
thickness value used in this paper, to enable the exploration
of new and higher-dimensional deformation signals (e.g.,
statistical shape changes, dense fiber motion).

V. DEFORMATION- & ACTIVATION-BASED TRAJECTORY
TRACKING

In this section, we present a proof-of-concept study in
which subjects performed a trajectory tracking task using the
thickness deformation signal examined above — showing
evidence that not only does deformation correlate with joint
force, it can be used for real-time device control, and is even,
in some cases, preferred by the user over sEMG-based control.
We first outline the trajectory tracking task and data collection
procedure, then examine subjects’ tracking performance and
reported preferences. Lastly, we discuss future expansions
and improvements to the tracking system and applications to
physical device control.

A. Tracking Data Collection
The same cohort of subjects (section IV-A.1) was asked to

evaluate two trajectory tracking control schemes (identified
to each subject as “mode 1” and “mode 2”); each subject
was only informed that each controller would be using
some combination of sEMG and ultrasound data, with no
additional details. In fact, these trajectories were much simpler
than this statement implies: the two modes were simply the
normalized thickness/deformation and normalized and mean-
filtered activation measures extracted from ultrasound and
sEMG data, respectively, and presented to the subject in a
randomized order.

For each trial, the subject was instructed to perform the
same trajectory tracking task described above in sections IV-
A.2–IV-A.3, with identical tracking initialization and cali-
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Fig. 7. Example time series data collected from subject Sub1 during separate deformation (blue, top) and activation (orange, bottom) tracking trials,
alongside specified goal trajectories (black, dotted). Subjects were able to complete the tracking task qualitatively well using both signal traces, despite
drift in the deformation tracking system that sometimes made returning the system to baseline difficult (as is evident to the right of this trajectory), and
uncontrolled, high-frequency oscillations in the activation signal.

bration steps, except that instead of the ground truth force
trajectory, the monitor displayed only the normalized thick-
ness/deformation or normalized and mean-filtered activation
trace, alongside the same goal trace used in correlation
analysis. The subject executed the full tracking task using
each signal twice, and the second trial was used in tracking
performance evaluation, to enable familiarization without
undue fatigue.

Each subject was then asked to complete a questionnaire,
with both Likert scale and free-form response elements, to
evaluate their controller preferences.

B. Quantitative Tracking Performance

In the following analyses, we evaluate tracking performance
of an exemplar subject, as well as across subjects and
trajectory types.

1) Illustrative Trajectories: Fig. 7 shows time series
tracking performance of subject Sub1 using each candidate
signal. This subject and most others were able to complete
the trajectory tracking task qualitatively well using both
thickness/deformation and activation signal traces.

On the other hand, these data highlight the drift that occurs
in our thickness tracking system, which we also observed in
the correlation analyses in section IV-B. While most subjects
could compensate for this drift somewhat when guided by
visual feedback, they were often unable to return the signal to
baseline at later stages of each trial (a challenge reflected in
subjects’ written feedback, as discussed below in section V-
C). Activation-based tracking displayed no such drift, but
showed many undesirable spikes and oscillations about the
goal trajectory. In future iterations of this work, we will seek
to ameliorate this noise with more aggressive mean filtering,
though this will come at a cost of responsivity.

2) Tracking Performance by Subject: As shown in Fig. 8,
most subjects completed the tracking task with reasonably low
RMS error using either sensor — generally performing best
using thickness/deformation-based control, underscoring the
value of this novel control paradigm. Perhaps unsurprisingly,
Sub7 (a subject discussed in section IV-B.2 as having irregular
anatomy) was the exception to this success, and was largely
unable to track the trajectory at all. Sub9, on the other hand,
despite similarly irregular anatomy, was nevertheless able
to adapt to the tracking system and achieve similarly low
error to that of other subjects whose muscle deformation
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Fig. 8. Tracking error during muscle deformation (blue) and activation
(orange) trajectory tracking tasks across all subjects. With the exception
of Sub7 — whose irregular anatomy prevented almost any deformation-
based control — subjects were largely able to achieve better, or at worst
comparable, performance when performing deformation-based control, as
compared with our baseline activation-based system.
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Fig. 9. Tracking error during muscle deformation (blue) and activation
(orange) trajectory tracking tasks across various trajectory types and in
aggregate, with noted standard deviation across subjects. During all but sine
trajectories — which we again theorize were impacted by the drift in our
deformation tracking system — subjects were able to consistently achieve
lower tracking error using the deformation signal.

more reliably correlated with force. These outliers underscore
the importance of continuing to examine additional possible
deformation signals as we work to build generalizable control
systems, but also the promising adaptability of human users
to suboptimal control signals in this space.

3) Tracking Performance by Trajectory Type: As illustrated
in Fig. 9, subjects were generally able to track all four
trajectory types (first outlined in section IV-A.3). Relative
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Fig. 10. Subject preferences when asked to evaluate deformation-
and activation-based tracking tasks separately (top) and in head-to-head
comparisons (bottom) on a 7-point Likert scale. Subjects largely found
the deformation-based tracking task easier and perceived the deformation
signal to better match their output force, though they rated the activation-
based tracker as more responsive, and most preferred the deformation-based
tracker overall. Full survey questions and responses are included with the
open-source data release.

to activation-based tracking — at which subjects performed
comparably regardless of trajectory type, aside from slightly
higher and more variable error during the step condition,
perhaps due to the combined challenge of modulating the
activation signal both quickly and to arbitrary levels —
subjects consistently achieved lower error using the thick-
ness/deformation signal. The one exception to this improved
performance was during the sine portion of the trajectory;
we theorize that this diminished performance is at least
partially due to the drift observed in our tracking software
(and discussed in section IV-B.3), though more exploration
is needed to validate this claim (e.g., temporally rearranging
trajectory elements).

C. Quantitative & Qualitative Tracking Preferences

Fig. 10 illustrates subjects’ survey-reported tracking signal
preferences, when evaluated both separately and compar-
atively. In both cases, subjects reported finding the thick-
ness/deformation trajectory easier to control, and felt it better
matched their perceived force trajectory, but that the activation
trajectory was more responsive. Most subjects preferred
the deformation-based controller overall — evidence that
deformation-based tracking is not only feasible, but can be
made intuitive for users.

In free-form responses, subjects noted many of the same
qualitative characteristics of each controller that were ob-
served by experimenters: many found that the deformation-

based tracker was “better for maintaining a steady trajectory”
but found it “hard to reduce the signal to ‘at rest’ level”;
conversely, they noted the “quick response” of the activation-
based tracker but found it “hard to maintain constant force”
and “hard to not overshoot.” One subject even noted that the
two tracking schemes “essentially had opposite issues” and
explicitly suggested sensor fusion. These comments — which
were largely consistent with experimenters’ own observations
— will be used to inform future improvements to each tracking
system in isolation (e.g., more aggressive low-pass filtering of
the activation signal, improved tracking software to address
drift and step artifacts) and in new, sensor-fused systems, as
discussed below.

Subjects’ full survey responses are included with the open-
source data release.

D. System Limitations & Future Directions in Trajectory
Tracking & Control

The promising results of this preliminary trajectory tracking
study — in terms of both tracking accuracy and subject
preferences — constitute strong evidence that it’s possible,
and even intuitive, to perform control with deformation-
based signals. We are currently working to adapt this work
to the control of physical devices, and in particular, to
enable natural control of multiple degrees of freedom by
extracting (highly localizable) deformation signals from
multiple muscles simultaneously. Such expansions to real
control applications will also require hardware enhancements,
including the use of wearable ultrasound devices, to which
this work should readily translate, many of which are under
development [31–33].

At the same time, the limitations of this study — namely,
the slower response time and drift associated with optical-flow-
tracked-deformation-based control — suggest compelling new
control approaches leveraging both deformation and activation
signals. We are currently exploring a number of control
schemes that combine these signals to exploit the strengths
of each (e.g., using baseline sEMG signals as a trigger to
reset tracked ultrasound points, or formulating a consensus
approach to maintain responsiveness while avoiding erroneous
motion).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that a simple measure of
muscle deformation — thickness change over time — is
correlated with output force, and that individuals can leverage
this signal to perform a trajectory tracking task. This set of
studies represents the first step toward real-time measurement
and understanding of the force–deformation relationship and
a proof of concept that insight into this aspect of muscu-
loskeletal dynamics can aid in the construction of intuitive
control schemes. As we begin to build complex, human-
interfacing devices, continuing to expand our understanding
of the underlying biomechanical system will be key — not
only to extract intuitive control signals, but to maintain safety
of the human user and avoid inducing pathological or injurious
motion.

The SimTK OpenArm project constitutes a first effort at
this type of holistic approach to the muscle force–deformation



characterization and control problem, and we encourage
researchers in the wider biomechanics, robotics, neuroscience,
and vision communities to utilize and contribute to this
project.
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