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Abstract— Despite the utility of musculoskeletal dynamics
modeling, there exists no safe, noninvasive method of measuring
in vivo muscle output force in real time. In this paper, we
demonstrate that muscle deformation constitutes a promising,
yet unexplored class of signals from which to infer such forces.
Through a preliminary case study of the elbow joint, in which
we examine simultaneous flexion force, surface electromyogra-
phy (sEMG), and ultrasound imaging data during isometric
contraction, we provide evidence that even simple measures
of deformation (including cross-sectional area and thickness
variation in the brachioradialis muscle) correlate well with
elbow output torque to an extent comparable with standard
sEMG activation measures. We then show that these simple
signals, as well as the overall brachioradialis contour, can be
tracked over time via optical flow techniques, enabling the
use of these signals in real-time applications (e.g., assistive
device control), as well as larger-scale study of deformation
signals without necessitating manual annotation. To enable such
future work, all modeling and tracking software described in
this paper, as well as all raw and processed data, have been
made available on SimTK as part of the OpenArm project
(https://simtk.org/projects/openarm) for general re-
search use.

I. INTRODUCTION

Despite decades of study, noninvasive, in vivo, real-time
measurement of muscle forces remains an open problem in
the biomechanics community. Without good models of muscle
force output during natural movement, our understanding of
how humans execute dexterous motions is fundamentally
limited, as is our ability to safely modify this execution
using assistive devices and to accurately characterize and
treat musculoskeletal pathology.

Historically, muscle forces have either been computed using
full-body modeling frameworks like OpenSim [1] and Any-
Body [2] — which can only account for limited physiological
variation and make strong optimization-based assumptions
about force distribution across synergists — or using surface
electromyography (sEMG), a sensing modality that measures
the neurological input to the musculoskeletal system, not
the resultant output forces. While these methodologies have
resulted in impressive advances in motion modeling and
device control, our ability to both understand and replicate
dexterous motions remains severely limited.

As a complementary technology to optimization-based
modeling and sEMG measurement, we propose muscle
deformation (as measured via ultrasound) as a class of signals
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that is both more directly representative of muscle output force
and easier to spatially localize than sEMG. In particular, we
show that 1) various simple measures of muscle deformation
(cross-sectional area, thickness, etc.) are readily observable for
an individual muscle, 2) these measures correlate with output
joint torque during a pulsed and sustained elbow flexion task,
and 3) it is feasible to track these measures over time using
optical flow and other computer vision techniques.

Deformation is a complex signal class that can be pa-
rameterized in a multitude of ways, and it largely becomes
useful (for example, in the context of assistive device control
or human motion analysis) when it can be both extracted
and interpreted in real time. Both aspects of this process
— definition of the deformation signal and real-time robust
observation — are challenging, as no general models of
in vivo muscle deformation exist. This paper presents an
exploratory analysis of several promising signal definitions,
as well as proof-of-concept tracking of these signals using
standard optical flow techniques. These tracking techniques
are in turn essential to future analyses, because without
automated methods of signal extraction, investigation of new
deformation signals is often prohibitively tedious.

The precise contributions of this paper are as follows:
• a novel, quantitative description of the relationship

between 2D deformation of the brachioradialis muscle
and output torque at the elbow joint, consistent with
simultaneous sEMG measurements of muscle activation,
in a preliminary cohort of subjects;

• proof-of-concept software to track this muscle deforma-
tion over time, released as an open-source codebase and
evaluated for tracking quality; and

• an open-source time series data set, including simulta-
neous ultrasound, sEMG, kinematic configuration, and
elbow torque data, for future study and modeling.

The latter two contributions have been made available for
general research use as part of the OpenArm project on
SimTK (https://simtk.org/projects/openarm),
which also hosts complementary research and data sets
examining 3D (static) muscle shape under various conditions
[3, 4].

II. MOTIVATIONS & RELATED WORK

Although finding a noninvasive measure of individual
muscle forces remains a core challenge inhibiting our under-
standing of human motion [5], no single sensing modality
or analysis framework has emerged as a dominant solution.
In this section, we examine the biological mechanisms
underlying muscle force to argue that deformation constitutes
a promising candidate signal class, then motivate this paper’s



proof-of-concept data set as a source of initial insights into
deformation’s time series behavior.

A. Deformation as a Measure of Output Force
While the human musculoskeletal system is highly complex,

geometrically irregular, and dominated by the physics of
various nonlinear materials, the core mechanism underlying
human movement is straightforward: muscles ratchet together
(largely via the actin-myosin cross-bridge cycle [6], though
other proteins like titin are thought to play a role as well
[7]), inducing a length change along the line of action,
which pulls the attached (roughly elastic) tendons, which then
impart the force to the skeleton. Under the (mild) assumption
that muscles are isovolumetric [8, 9], this length change by
definition induces a shape change, or deformation, in the
activated muscle.

Several isolated studies have established a correlation be-
tween muscle activation and shape change [10–15], including
our own previous work examining the full 3D extent of
the biceps brachii under static (but kinematically varied)
elbow loading [3]. This prior study showed evidence that
such deformation — measured as muscle cross-sectional
area (CSA) or thickness changes — is readily observable via
ultrasound, though the appearance of the muscle cross section
varies drastically with both sensor location and kinematic
configuration. This signal complexity is the result not only of
the nonuniform material properties of a given muscle–tendon
unit, but of its contact dynamics with surrounding structures.
This complexity means that interpreting the deformation
signal is not always obvious: while some locations along the
arm show a reliable CSA or thickness increase corresponding
to increased output force, others may show a decrease or
no reliable change, and this varies based on which precise
parameterization of deformation is used.

B. Brachioradialis Measurement via Ultrasound as a Proof-
of-Concept

As an initial study of the force–deformation relationship,
we examine deformation of the brachioradialis (one of several
elbow flexors) and its relationship to elbow force output.
As in previous studies [3, 4], we focus on isometric elbow
flexion as a proof-of-concept motion, as it is a comparatively
simple joint (with only one degree of freedom and only a
few muscles) that is relevant to the upper-limb modeling
cases for which this research may be especially applicable.
Also as before, we measure this deformation via 2D B-mode
ultrasound, a technology that is safe, portable, and provides
a relatively clear image of the fascia between muscles.

To allow collection of time-varying data, we restrict
ourselves to a single 2D ultrasound frame collected from
the same location along the arm at all time points. We target
the brachioradialis for analysis, as it is the smallest of the
elbow flexors and its cross-section largely fits within the
frame of a single ultrasound scan for many subjects (unlike
the biceps or brachialis). Because muscle shape differs greatly
across both kinematic configuration (here, elbow angle) and
individual subject, we vary each of these in turn, examining
the correlation of several muscle deformation signals with
output force (in section III) as well as our ability to track
these measures (IV).

(c)
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Fig. 1. Experimental setup for the collection of time series force, surface
electromyography (sEMG), and ultrasound data under multiple elbow angles.
Setup includes sEMG electrodes (a); ultrasound probe (b); UR5 robot (c)
with attached handle, through which subject may transmit force to force
plate (d); and wrist brace (e) for elbow isolation.

III. MUSCLE FORCE–DEFORMATION CORRELATION

In this section, we present preliminary data indicating that
several measures of brachioradialis muscle deformation cor-
relate with with output torque at the elbow and are consistent
with simultaneous sEMG data. We first outline our subject
cohort and collection procedure, then present preliminary
time series data alongside qualitative and quantitative analysis
of the force–deformation relationship. Lastly, we comment
on how these preliminary analyses suggest future research
directions.

A. Data Set Collection
As an exploratory data set, simultaneous sEMG, ultrasound,

and output force data were collected from a single subject
under multiple kinematic configurations during a sequence of
voluntary flexion pulses, in a protocol similar to that used in
[16] and illustrated in Fig. 1. To explore consistency across
individuals, we collected ultrasound and force data from an
additional 4 subjects at a single representative configuration.
Details of this subject cohort and collection procedure are
outlined below.

1) Subject Biometric Data & Consent: Data were collected
from the right arms of 5 subjects (2 female, 3 male). Of these,
4 subjects were within age 18–24, while the last subject was
age 83 and used to investigate generalizability across age
groups. All subjects were healthy, with a wide variety of
exercise regimens and body types. The study protocol was
approved by the University of California Institutional Review
Board for human protection and privacy under Protocol ID
2016-01-8261.

2) Data Collection: Each experimental trial consisted of a
pulsed sequence of isometric elbow flexions, executed while
the subject was instrumented with a lab-developed sEMG
system [17] and a 3–12 MHz linear ultrasound transducer
(L3–12 NGS, eZono AG, Jena, Germany) attached to its
corresponding ultrasound unit (eZono 4000, eZono AG,
Jena, Germany). Surface EMG electrodes were placed in



a differential configuration on both the upper and lower arm,
targeting the biceps and brachioradialis, respectively. The
ultrasound transducer was placed perpendicular to the lower
arm (i.e., roughly perpendicular to the brachioradialis) at a
consistent marked location and lightly stabilized in the sagittal
plane via an L-shaped support. When exerting force, subjects
pressed upward on a handle mounted to the end effector of
a 6-degree-of-freedom robot arm (UR5, Universal Robots,
Odense, Denmark). This robot remained static for each trial,
but changing its configuration between trials served as an easy
manner of repositioning the handle in space based on subject
physiology and desired elbow angle during measurement. The
robot was in turn mounted to a 6-channel force plate (Optima-
HPS, Advanced Mechanical Technology, Inc., Watertown,
MA, USA), which was used to measure the output force
exerted by the subject. Additionally, each subject wore a
brace to immobilize the wrist.

During data collection, the subject sat comfortably upright,
feet planted, with the back of the upper arm supported and
elbow flexed to the prescribed angle, as shown in Fig. 1.
Subjects were instructed to press upward in the sagittal
plane while only exerting force at the elbow and keeping the
forearm completely supinated. For each experimental trial,
the subject was guided in a series of 21 force pulses, each of
2 s duration with 1 s rest in between, via a visual display that
instructed the subject to press with “low”, “medium”, or “high”
intensity at each interval. The first 3 intervals were always
performed in order of increasing intensity, while the remaining
18 were randomized. For select trials, this pulsed sequence
was followed by a set of 3 sustained force presses (each 5 s
in duration, with 2 s rest in between) in increasing order of
intensity. Note that this protocol was intended primarily to
generate a wide variety of force conditions, not to prescribe
specific force values; none of our analyses rely on subjects
following this protocol exactly, and there is high variance in
the extent to which this sequence is readily observable in the
collected force data.

3) Data Scope: Using the protocol above, simultaneous
force, sEMG, and ultrasound data were collected from a single
subject (denoted Sub1) at elbow angles of 25◦, 44◦, 69◦,
82◦, and 97◦, as measured from full extension. Simultaneous
force and ultrasound data were collected from an additional 4
subjects (denoted Sub2–Sub5) at a self-selected, comfortable
elbow angle near 69◦ for comparison with the primary
subject’s 69◦ trial.

B. Data Processing & Definition of Deformation Signals

Prior to our correlation analyses, we preprocessed the
raw data streams in the following manner to extract force,
neural activation, and deformation measures that are readily
comparable. All preprocessing and analysis details have been
released on the OpenArm codebase, and an exemplar of the
finalized trial data can be seen in Table I.

1) Force and sEMG Preprocessing: To generate a single
output force magnitude from the collected 6-channel (i.e.,
3-channel force and 3-channel torque) force plate data, the
measured wrench was first transformed into the handle’s frame
of reference based on the robot’s kinematic configuration. The
magnitude of the subject’s output force was then calculated

as the magnitude of the force component of the resultant
wrench.

To generate muscle activation data from raw sEMG values,
ambient noise was first removed with a 60 Hz notch filter.
Our final activation measure is the absolute value of this
denoised signal, smoothed by an exponential moving average
filter. These sEMG values were collected from both the
brachioradialis and the biceps brachii, both of which aid
in elbow flexion. We present both in the analyses below —
the first because it is more closely related to the observed
brachioradialis deformation, and the second because it is a
mildly cleaner signal and thus constitutes a more competitive
baseline for our comparison with deformation measures.

2) Extraction of Deformation Measures: Given our time
series data of ultrasound images, we can parameterize muscle
deformation in a multitude of ways, from shifts in individual
pixel values to changes in muscle dimensions. For this
preliminary study, we examine the following three shape
measures.

Cross-sectional area (CSA). We define CSA as the total
area of the brachioradialis cross section visible on a given
ultrasound scan.

Thickness (T). We define T as the maximum extent of the
brachioradialis cross section measured from the surface of
the skin perpendicularly away from the transducer.

Aspect ratio (AR). We define AR as the ratio between
the thickness T of the brachioradialis cross section and its
maximum extent in the perpendicular dimension.

Each of these 3 metrics is calculated by first manually
masking the brachioradialis cross section at each time point,
then extracting each above-defined value from the mask. We
note two salient sources of measurement error. First, the
full extent of the brachioradialis cross section often extends
beyond the measured ultrasound frame, impacting primarily
the CSA and AR measures. Second, the manual masking
process relies on human annotation that is inconsistent and
time consuming. We are currently working to address the first
through our studies of full 3D muscle deformation, in which
we examine the full extent of a given muscle to pinpoint
promising deformation signals visible within a single frame.
The second limitation is addressed through our studies of
automated cross section tracking outlined in section IV.

3) Alignment of Data Streams: Due to the technical
peculiarities of each sensor, a fully time-synced data collection
system remains under development; in this preliminary study,
we align the force, sEMG, and ultrasound data streams
based on the temporal location of the first force pulse,
which is manually noted in each data stream, then linearly
interpolate each series to attain a consistent frequency. We
make no claims on the precise temporal relationships between
force, activation, and deformation signals, but see this as a
fascinating direction of future study, particularly with respect
to the differences in timing between neurological input signals
measured by sEMG and their mechanical deformation outputs.

4) Ultrasound Drift Compensation: Although the ultra-
sound probe was stabilized by a support structure during
collection, the precise location of the probe relative to the
brachioradialis muscle tends to drift over time, primarily
due to subjects’ skin shifting and the probe rotating relative
to the arm. To compensate for this drift, we fit a third-



TABLE I
EXAMPLE TIME SERIES DATA

SIGNAL Symbol

Pearson Correlation 
Coefficient

raw, detrended
CC ( ·, f) Time Series Signal

force
(N) f 1.00

sEMG, biceps
(mV raw, 0.1mV processed) sEMG-BIC 0.38

sEMG, brachioradialis
(mV raw, 0.1mV processed) sEMG-BRD 0.27

cross-sectional area
(mm2) CSA(-DT) 0.44, 0.48

thickness
(mm) T(-DT) 0.59, 0.72

aspect ratio AR(-DT) 0.70, 0.78

Example time series data (collected from Sub1 at 25◦ elbow flexion) of elbow output force (black) in which the subject executed a series of prescribed
force pulses and sustained exertions. Data streams include biceps (light orange) and brachioradialis (dark orange) surface electromyography (sEMG) data,
as well as detrended ultrasound-measured cross-sectional area (CSA, cyan), thickness (T, blue) and aspect ratio (AR, dark blue) of the brachioradialis cross
section. In general, CSA, T, and AR deformation measures correlate well with output force, especially when detrended. Moreover, these force–deformation
correlations are of comparable strength to those between force and more standard sEMG measures. Note that raw (gray) and processed (orange) sEMG
traces are plotted at different scales for clarity as noted, and reported correlation coefficients are for processed data.

order polynomial to each of the CSA, T, and AR data series,
measured only at time points at which force was near zero
(i.e., between prescribed pulses). We then subtract the value of
this polynomial at each point in the original series to generate
“detrended” data. We examine both the original deformation
data streams and their detrended counterparts in the analyses
below.

C. Correlation & Evaluation

In the following analyses, we use the Pearson correlation
to assess the viability of using our candidate deformation
measures to infer output force, alongside or as an alternative
to sEMG. We first examine an illustrative time series,
then discuss how our assertions translate across changes
in kinematic configuration and across subjects.

1) An Illustrative Time Series: Table I shows representative
pulse data from a single trial (specifically, that of Sub1
collected at 25◦) alongside each data stream’s correlation
coefficient as measured against force data. In this series,
and in general, our deformation measures CSA, T, and AR
correlate comparably with sEMG from both the biceps and
brachioradialis; in this case, in fact, they are substantially
more correlated (though this varies with both elbow angle
and subject, as discussed below).

This exemplar also illustrates two other trends largely
consistent throughout the data. First, thickness T and aspect
ratio AR are somewhat more correlated with output force than
cross-sectional area CSA, perhaps because an increase in one
dimension is often accompanied by a decrease in the other
due to muscles’ isovolumetric nature. Second, detrending the
data using the method detailed in section III-B.4 generally
improves the observed correlation, providing evidence that
sensor drift (or some biological source of drift, e.g., fatigue)
indeed occurred.

2) Deformation and Elbow Angle: Fig. 2 illustrates the
manner in which correlation strength varies with angle for
each data stream on our exemplar subject, Sub1. For flexion
angles less than approximately 90◦, deformation measures
remain reasonably correlated with force, with detrended
data performing slightly better as in our illustrative data
series. The relative performance of CSA, T, and AR measures,
however, varies in a complex manner that is difficult to
characterize but reflected qualitatively in the accompanying
illustrative frames, which show significant angle-dependent
variation in shape and size. This variation is perhaps most
obvious in the highest-flexion 97◦ data series, in which
the cross section changes shape entirely and our defined
deformation metrics largely fail, perhaps because the belly of
the muscle has shifted significantly away from the ultrasound
probe location. Interestingly, sEMG correlations behave in
the opposite manner, with the largest correlations occurring
at the highest flexion angles. While this may simply be a
subject-specific phenomenon, it suggests that hybrid sensor
approaches — in which ultrasound-measured deformation
and sEMG-measured activation are employed, depending on
kinematic configuration — may hold more promise for robust
device control than either technology alone.

3) Multi-Subject Deformation: Fig. 3 shows the strength
of each deformation signal’s correlation with force on a
representative trial (near elbow angle 69◦) for each of our
5 subjects. All measures CSA, T, and AR are consistently
correlated with a magnitude of around 0.5 or higher even
though the subjects vary significantly in terms of muscle mor-
phology, suggesting that the underlying biological mechanism
generating the signal is common to all subjects. As before,
detrending the data generally provides a mild performance
boost if a significant trend was removed, or makes little
difference if no trend was observed. (The one exception, in
which detrending resulted in decreased correlation, is Sub4,



Fig. 2. Top: Correlation of cross-sectional area (CSA, cyan), thickness (T,
blue) and aspect ratio (AR, dark blue) of the brachioradialis cross section,
both raw (solid) and detrended (dashed), with elbow output force, alongside
baseline force correlations with biceps (light orange) and brachioradialis
(dark orange) surface electromyography (sEMG) data. Correlations were
computed across flexion angles ranging from near full extension (25◦) to near
maximum flexion (97◦). CSA, T, and AR deformation signals, especially
when detrended, correlate well with elbow output force for most elbow
angles, but this correlation collapses near full flexion. Bottom: Example
ultrasound frames with annotated brachioradialis contours depicting no force
(top row) and high output force (bottom row) at each examined flexion angle
reflect the changing presentation of muscle deformation with changes in
elbow angle.

Fig. 3. Top: Correlation of cross-sectional area (CSA, cyan), thickness (T,
blue) and aspect ratio (AR, dark blue) of the brachioradialis cross section, both
raw (solid) and detrended (hashed), with elbow output force, across various
subjects, collected at ∼69◦ elbow flexion. CSA, T, and AR deformation
signals, especially when detrended, correlate well with output force, though
the magnitude and direction of these correlations varies widely across subjects.
Bottom: Example ultrasound frames with annotated brachioradialis contours
depicting no force (top row) and high output force (bottom row) for each
subject reflect substantial morphological variation.

for whom a truly meaningful trendline could not be computed
due to lack of zero-force baseline data throughout the data
series.)

Perhaps the most interesting subject data is that of Sub5,
our single elderly subject and the only subject physically
small enough that virtually the entire brachioradialis cross
section was visible in every data frame. Like other subjects’
data, the magnitude of each deformation signal’s correlation
was substantial — in fact, T and AR signals were more
correlated with force than for any other subject, perhaps due
to the completeness of the cross-sectional image. Oddly, the
subject’s CSA data, while strongly correlated with force, was
negatively correlated (i.e., CSA decreased with the application
of force), in what could be a quirk of morphology, a function
of sensor placement, or a property of aging musculature.
We see this question in particular as meriting future study,
as aging individuals could especially benefit from advances
in muscle force measurement technology. We present this
preliminary data as evidence both that measuring deformation
data in elderly subjects is possible and that the data collected
is largely consistent with that of younger subjects.

D. Future Directions in Force–Deformation Modeling
The sections above constitute preliminary analysis on a

limited data set, which we aim to further expand with addi-
tional subjects (of varying age and ability), additional force
values and durations, fully time-synchronized ultrasound,
sEMG, and force data (perhaps via the methods used in
[12]), and an improved (e.g., multi-channel) sEMG system for
more equitable ultrasound comparison. Such enhancements
will allow for expanded understanding of the results above
(including the impact of age on the deformation signal) and
of phenomena not yet explored (e.g., the temporal sEMG–
deformation relationship, the impact of fatigue).

In addition to these data quality enhancements, we also seek
an understanding of the biological mechanisms underlying
our deformation measures. This is a significant analytical
challenge, as shown visually in Fig. 2 and 3’s illustrative
frames: a single muscle cross section, without accompanying
3D shape data, is difficult or impossible to interpret, and
simple deformation measures like those analyzed above barely
scratch the surface of its architectural nuance. Informed by
the correlations we observe in this paper, we are addressing
these challenges from two complementary perspectives. First,
we are constructing and analyzing full 3D muscle images
to allow for improved interpretation of 2D cross-sections,
including what low-dimensional deformation signals are most
correlated with force and where they are best observed
relative to the underlying skeleton under different kinematic
configurations [3, 4]. Second, we are working to track these
candidate deformation signals, as well as the movement
of individual pixels along and within the muscle contour,
to enable the exploration of new and higher-dimensional
deformation signals; this is the subject of section IV below.

Note also that although the ultimate goal of this research
is to relate measures of muscle deformation to individual
muscle forces, for the purposes of this preliminary study, we
restrict our analyses to net joint output torque. This research
is interesting precisely because there are no readily available
individual force measures with which to compare our data,



and we believe that the deformation–net-force correlations
presented here, along with the insights in section II-A
regarding the physiological causes of deformation, constitute
a powerful case that this signal is a promising candidate for
individual muscle force measurement. In the future, we aim
to probe this claim both empirically (e.g., via invasive animal
study that enables muscle–tendon unit isolation) and through
enhanced modeling (e.g., fitting Hill-type muscle models and
examining their predictive power).

IV. MUSCLE CROSS SECTION TRACKING

In this section, we present several algorithms to track
both our candidate deformation signals (CSA, T, and AR,
as defined in section III-B.2 above) and the overall contour
of the brachioradialis muscle. We first precisely define this
tracking problem and its associated performance metrics, then
discuss each algorithm’s performance on the multi-angle,
multi-subject data set generated and analyzed in section III.

A. Defining the Tracking Problem
Although any number of tracking schemes, both sparse

and dense, could be used to extract varied measures of defor-
mation, we focus on the problem of muscle contour tracking
— more precisely, tracking the edges of the brachioradialis
muscle as it shifts over time. We choose this formulation for
a number of reasons. First, our candidate deformation signals
CSA, T, and AR can be readily extracted from the tracked
contour. Second, the manually-generated mask data used in
section III’s analysis provides a ready ground truth signal
for both overall tracking quality (via intersection-over-union
computation, for example) and for our previously examined
deformation signals of interest. Third, the tracked contour
admits future extraction of more complex deformation signals
(e.g., statistical shape models or masked dense optical flow
measures) while isolating a given muscle of interest from the
surrounding tissue.

Lastly, tracking this cross section is feasible, if challeng-
ing: the brachioradialis, like many muscles of interest, is
surrounded by fascia that appear brighter than surrounding
tissue on an ultrasound scan. While the fascial structure is
sometimes narrow and difficult to track — a fact that informs
our more sophisticated tracking schemes — the preliminary
results below indicate that even standard, untuned tracking
methods perform relatively well in many cases.

B. Candidate Tracking Algorithms
Tracking biological structures within ultrasound data is

an active area of research, with a number of general [18]
and structure-specific [11, 19–23] approaches proposed. As
a proof of concept, we examine the following candidate
algorithms, each of which is built on the standard iterative
Lucas–Kanade method of optical flow estimation [24] as
implemented in the OpenCV Python library [25].

For the latter two algorithms, we present tracking error
results for two sets of parameter values, “general” (tuned via
expert-informed grid search on the Sub1 data series collected
at 69◦ elbow flexion) and “subject-specific” (tuned using
each subject’s ∼69◦ data series). The full details of each
implementation, including algorithm-specific parameter values
and tuning methods, have been released with the analysis

Fig. 4. Example ultrasound frames from Sub1 69◦ data series and their
respective tracked contour points using each candidate algorithm, at (relaxed)
initialization (top) and approximately 91 s into tracking during force exertion
(bottom). Center left: Complete set of contour points (red) tracked via naive
Lucas–Kanade (LK) generally describes ground truth muscle shape (GT,
left), but fails to track more extreme deviations and exhibits significant drift
error. Center: Refined set of contour points based on feature quality (red)
and tracked via Lucas–Kanade (FRLK) describe muscle shape only mildly
more accurately than naive LK approach. Center right: Refined contour
points tracked after aggressive (red) and less aggressive (yellow) bilateral
filtering (BFLK) experience slightly less drift error, but still fail to capture
deviation in the top right quadrant of the contour where fascia is narrow.
Right: Combining Lucas–Kanade tracked refined feature points (red) with
contour points (green, closed) predicted based on supporter point locations
(green, open) (SBLK) results in reasonable tracking of the full muscle contour
as long as supporter point motion is well-correlated with contour motion.

codebase, and example frames from each tracker are shown
in Fig. 4.

Naive Lucas–Kanade (LK). As a tracking baseline, we
perform unmodified iterative Lucas–Kanade optical flow on
every point along the brachioradialis contour, regardless of
feature quality, initialized via the manually segmented contour
mask in the first frame.

Feature-Refined Lucas–Kanade (FRLK). As a refinement of
the LK procedure above, we track only the top 70% of feature
points along the manually segmented contour as measured by
their Shi-Tomasi corner score [26], a good indicator of the
trackability of a point. In general, this refinement results in
less drift-associated error from poor feature points but often
fails to track narrower sections of the fascia altogether.

Bilaterally-Filtered Lucas–Kanade (BFLK). To further
improve the tracking of individual contour points through
noise removal without compromising edge integrity, we
generate two denoised images at each time point via two
separate bilateral filters [27]. The first of these filters is tuned
to aggressively suppress speckle noise, but also removes
narrower sections of fascia; the second generates a noisier
image but retains even narrow fascia sections. Points along
the initial manually segmented contour are again culled based
on feature quality, this time in each of the filtered images,
to generate two sets of high-quality feature points. (Points
considered high quality on both filtered images are tracked
on the more noise-suppressed frame.) These point sets are
then tracked via standard Lucas–Kanade on their respective
filtered images, and the contour at each time point is computed
from the union of these points. Parameters tuned for subject-
specific algorithm implementations include both the noise
reduction characteristics of each bilateral filter and the fraction
of highest-quality points used for tracking.

Supporter-Based Lucas–Kanade (SBLK). We further refine
the BFLK method above in a manner similar to that described
in [28]: high quality contour points (after aggressive bilateral
filtering) are tracked via Lucas–Kanade, and the remainder of
the contour is filled in based on the relationship of contour
points to “supporter points” of high feature quality extracted
from throughout the image. To avoid irregularities caused



by alternating Lucas–Kanade-tracked and supporter-tracked
points — and observing that the narrowest, most featureless
portion of the contour occurs in the top right quadrant of the
contour — we enforce that all supporter-tracked points belong
to this quadrant, and all Lucas–Kanade-tracked contour points
remain outside. We then again apply two bilateral filters to
each frame; using the first and most aggressive, we again
obtain the top fraction of contour points by feature quality
and track those that lie within the non-supporter quadrants via
Lucas–Kanade. Next, using the second and less-aggressive
filter, we select a set of “supporter points” of high feature
quality, which we assume maintain a consistent distance to
each contour point in the supporter-tracked quadrant. We then
track these supporter points via Lucas–Kanade and use each
supporter point to predict the new location of each contour
point based on this constant-displacement assumption, in a
manner similar to the “one-shot learning” method described in
[29]. We calculate each contour point’s final predicted location
as the dynamically weighted mean over all supporter points’
predictions, where we rely more heavily on supporter points
that themselves deviate significantly over time from their
initial position (to avoid relying too heavily on unmoving
background feature points). Parameters tuned for subject-
specific algorithm implementations include those tuned in the
BFLK algorithm, as well as the number of supporter points,
the fraction of Lucas–Kanade-tracked points, and properties
of the (affine) prediction weighting function.

C. Tracking Error Metrics

In evaluating the performance of the algorithms above,
we wish to characterize how well each algorithm tracks
our CSA, T, and AR measures of interest, as well as how
precisely it tracks the muscle contour overall. We thus present
explicit CSA, T, and AR error values along with contour
segmentation error, computed as Jaccard distance (i.e., one
minus intersection-over-union, or IoU).

D. Preliminary Tracking Performance

In this section, we evaluate our candidate tracking al-
gorithms on the force–deformation data set generated and
examined in section III, remarking on each algorithm’s general
performance and its performance variation across subjects.

1) An Illustrative Time Series: Table II shows aggregate
tracking error values over the Sub3 data series examined in
section III. While tracking performance varies by subject
and kinematic configuration, these values illustrate sev-
eral observed trends. First, adding structure to specifically
track narrow sections of fascia via the BFLK and SBLK
algorithms often improves performance over naive Lucas–
Kanade baselines (though which of these two algorithms
gives this performance boost varies by subject, as reflected
in Fig. 4). Second, per-subject tuning generally improves
tracking performance, as discussed in detail in section IV-D.2
below. Third, thickness T is the easiest of our deformation
measures to track, and AR the most challenging, suggesting
that although AR correlates slightly more reliably with muscle
output force, T — which also correlates reasonably well —
may be a better choice of control signal.

TABLE II
EXAMPLE TRACKING ERROR

TRACKING 
ALGORITHM Symbol

Tracking Error (M±SD)

(1-IoU)

Naive Lucas–Kanade LK 0.17±0.05 0.37±0.22 0.11±0.08 0.29±0.13

Feature-Refined 
Lucas–Kanade FRLK 0.19±0.05 0.31±0.18 0.09±0.06 0.28±0.15

Bilaterally-Filtered 
Lucas–Kanade, general BFLK-G 0.18±0.06 0.38±0.20 0.11±0.09 0.30±0.12

Bilaterally-Filtered 
Lucas–Kanade, tuned BFLK-T 0.16±0.04 0.24±0.13 0.10±0.07 0.31±0.12

Supporter-Based 
Lucas–Kanade, general SBLK-G 0.20±0.06 0.30±0.22 0.09±0.05 0.29±0.09

Supporter-Based 
Lucas–Kanade, tuned SBLK-T 0.18±0.05 0.19±0.11 0.08±0.05 0.36±0.13

Example tracking error of LK, FRLK, BFLK, and SBLK algorithms, both
tuned and untuned, on Sub3 data series, computed as both Jaccard distance
(one minus intersection-over-union, or IoU) and fractional error on predicted
CSA, T, and AR deformation signals. In general, tuned algorithms outperform
untuned algorithms, more structured algorithms (BFLK and SBLK) often
outperform less structured ones, and T is tracked with lower mean error
than CSA or AR. Values are presented as mean ± standard deviation.
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Fig. 5. Mean tracking error and standard deviation of LK (pink), FRLK
(brown), BFLK (blue), and SBLK (purple) algorithms, both tuned (hashed)
and untuned (solid), computed as Jaccard distance, across various subjects,
collected at ∼69◦ elbow flexion. Both the top performing algorithm and
the level of tracking accuracy achieved, as well as the extent to which
algorithm tuning mitigated errors, varied substantially by subject, likely due
to variations in both morphology and motion qualia. Note that for Sub1,
whose tuned values formed the generic baseline for all tracking, tuned and
untuned tracking algorithms are the same.

2) Multi-Subject Tracking: Fig. 5 shows tracking error
for each proposed algorithm on the five subjects examined
in section III. Overall tracking quality (both mean and
standard deviation of the error) varies substantially by subject,
likely due to both the morphology differences illustrated in
Fig. 3 (Sub2, for example, had extremely narrow fascia) and
differences in motion strategy (Sub4, for instance, moved very
abruptly). The importance of subject-specific tuning varies
as well; Sub5, whose morphology varies substantially from
that of Sub1, showed a large decrease in mean tracking error
with tuning, while Sub3, whose morphology is more similar,
showed a much more modest improvement.



E. Future Directions in Muscle Cross Section Tracking
Both the algorithms examined and our preliminary analyses

of their quality are only the first steps toward real-time muscle
cross section tracking, and the algorithms we selected were
tailored to our particular data set of interest only in the
most general sense. True assessment of their quality will
require a much more rigorous examination of time series error
characteristics (e.g., whether errors occur primarily due to
failure to track transient force changes or general point drift),
as well as collection of data sets more expressly designed to
elucidate tracking error. (The data sets here, by contrast, were
primarily collected to assess correlation, and thus contain
little variation in speed of force application.) In addition
to addressing these concerns, we are currently examining
more sophisticated model-based tracking approaches (e.g.,
edge tracking, applying shape priors) and evaluating the
computational feasibility of deploying these approaches for
real-time tracking.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that several simple muscle
deformation signals are correlated with output force, and that
these measures can be observed and tracked over time via
ultrasound. Going forward, new insights in the muscle force–
deformation relationship should inform the signals we seek
to track, but so too should advances in computer vision and
graphics inform the candidate deformation signals we consider
in the system identification process. The SimTK OpenArm
project constitutes a first effort at this type of holistic approach
to the muscle deformation characterization problem, and we
encourage researchers in the wider biomechanics, robotics,
neuroscience, and vision communities to utilize and contribute
to this project.
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