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Abstract— To enable intuitive end-user control of high-
degree-of-freedom exoskeletons and other assistive devices, we
propose two novel measures of muscle activation for use as con-
trol signals: vibration, as measured via acoustic myography, and
deformation, as measured via ultrasound. When used alongside
or instead of traditional surface electromyography signals, these
measures offer significant insight into musculoskeletal dynamics
and the potential for enhanced device control capabilities.

I. INTRODUCTION & OBJECTIVES

From assistive exoskeletons to teleoperated robot arms, a
wide array of sophisticated, high-degree-of-freedom (DoF)
devices have the mechanical potential to replicate human
dexterity. At the same time, intuitive control of the full range
of these devices’ potential behaviors — i.e., independent
manipulation of each DoF — remains an open problem due
to the high cognitive load on the human user. Generally, this
load is resolved by extracting biological control signals that
the user naturally modulates; this is most often accomplished
via surface electromyography (sEMG), a measure of electri-
cal depolarization during muscle activation.

Although sEMG is ubiquitous in the field of biosignal-
driven assistive devices, the signal is noisy, spatially ag-
gregate, sensitive to sensor placement, and doesn’t measure
many downstream physiological factors that impact the final
muscle output force [1]. As a result, most sEMG-controlled
devices are capable of modulating only a single DoF (e.g.,
grasp closure) or classifying a finite number of discrete
behaviors (e.g., grasp types). To address these limitations, we
explore two alternative measures of activation that can be di-
rectly related to muscle force: muscle vibration (as measured
via acoustic myography, or AMG) and muscle deformation
(as measured via ultrasound). Because both are measures of
mechanical phenomena — unlike the neurological signals
measured by sEMG — we can construct dynamics-informed
control systems without building an input-output model
relating neurological intent to muscle force. AMG, like
sEMG, provides a waveform signal, but boasts a significantly
higher signal-to-noise ratio and less sensitivity to electrode
location [2]; ultrasound requires comparatively complex im-
age processing and uses sensors that are bulkier and less
readily wearable, but it generates a spatially localized signal
to permit independent analysis of individual muscles. We
therefore investigate both activation signals to build a more
complete and versatile understanding of macro-scale muscle
physics relevant to assistive device control.
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Fig. 1. Preliminary acoustic myography data of the biceps and triceps
brachii show substantial correlation with muscle output force. Left: Simpli-
fied sagittal model of the elbow used in data analysis. Right, top: A1ν1 of
the biceps is highly correlated with output torque τ (r = 0.9, p < 10−6).
Right, bottom: Example A1ν1 and A2ν2 trajectories (of the biceps and
triceps, respectively) during random isometric elbow stiffness modulation,
showing significant correlation between the two data series (r = 0.6, p <
10−7), consistent with maintaining constant output torque.

II. AGGREGATE MUSCLE FORCE VIA VIBRATION

The manner by which the electrical potential changes
measured by sEMG are translated into muscle output force is
poorly understood; as a result, it remains difficult to use the
sEMG signal for control in both physics-based and black box
frameworks, and most available systems use either simple
differential control schemes or machine learning approaches
with ad hoc signal features. In contrast, the muscle vibration
measured by acoustic myography (AMG) is thought to
directly reflect the dual mechanisms by which muscle force
is generated: increased numbers of recruited fibers (reflected
in signal amplitude) and increased firing of each motor unit
(reflected in signal frequency) [2]. This relationship has been
explored in analyses of muscle efficiency over the course of
sports training and rehabilitation [2], but it has not yet been
leveraged in real-time scenarios such as device control.

To investigate the feasibility of AMG-driven, physics-
based control schemes — and to illustrate the advantage
of physics-based systems — we consider the simplified
model of human elbow flexion shown in Fig. 1, in which
the forces Fm1 of the (biceps-like) agonist and Fm2 of
the (triceps-like) antagonist are modeled as proportional to
the product of AMG amplitude and frequency (A1ν1 and
A2ν2, respectively). The forearm is modeled as a point mass
centered at its distal end. The task of gravity compensation
— i.e., holding the forearm still in the presence of gravity —
can be accomplished using a continuous range of agonist and
antagonist force values, and during the unstructured motion
of daily life, these forces are often modulated to vary elbow
stiffness. All human joints are similarly over-actuated, and
if we wish to design controllers that mimic the full range of
human capability, we must be able to model and understand
this phenomenon. Differential control schemes, by their very
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Fig. 2. Muscle deformation, as measured via ultrasound, shows promise
as a highly localized measure of muscle force. Left: Experimental setup
enabling the collection of volumetric arm models via ultrasound and motion
capture. Right: Preliminary volumetric data of the biceps brachii (magenta)
and surrounding muscles show measurable deformation due to changes in
both elbow angle and load.

structure, are not capable of modeling this over-actuation.
While even the simplified model above is difficult to val-

idate in vivo, we performed a preliminary proof-of-concept
analysis [3] by collecting AMG data from the biceps and
triceps brachii of a single subject under static conditions
to validate the following two hypotheses: (1) under relaxed
conditions (i.e., minimal elbow stiffening), A1ν1 correlates
positively with output torque τ ; and (2) for a given τ , un-
der varying elbow stiffness, A1ν1 correlates positively with
A2ν2 to maintain a constant output torque. Collected data
supported both hypotheses, as shown in Fig. 1, suggesting
that the Aν quantity is well-correlated with muscle force.

Given this promising initial data, we are currently working
to investigate both the temporal and spatial resolution of the
AMG signal, fit and validate parameters α1 and α2 to our
preliminary model to enable force inference, and expand the
resultant models to complex multi-muscle systems.

III. LOCALIZED MUSCLE FORCE VIA DEFORMATION

Perhaps the most significant limitation of the sEMG (and
AMG) signal is its spatially aggregate nature: it is largely
impossible to disambiguate the signals of individual surface
muscles, and deep muscles cannot be observed at all. We
thus propose muscle deformation as an alternative measure
of activation, which can be measured in a highly localized
manner via ultrasound.

While ultrasound has been used in device control via deep
learning classification methods [4], there does not yet exist
a model directly relating deformation to activation (or, more
precisely, to muscle output force). In addition, while muscle
deformation occurs during force exertion [5], it also occurs
during passive changes in kinematic configuration, when the
changing relative positions of the attachment points cause
muscles and tendons to stretch and slide.

In a preliminary study [6] to understand the relationship
between muscle deformation and output force in the presence
of purely kinematic deformation, we generated a factorial set
of volumetric arm scans under multiple loading conditions
and elbow angles from each of three subjects. Each scan
was collected using an expert-manipulated ultrasound probe
in conjunction with motion capture, which allowed each
ultrasound image to be localized in space. We then manually
segmented the biceps brachii (along with other elbow flexors
and surrounding tissue structures) of a single subject to
generate the first-ever data set permitting separable analysis

of force- and configuration-associated muscle deformation.
This data set can be accessed at hart.berkeley.edu.

In addition to data set generation, our preliminary analyses
confirmed that both load and configuration changes cause
muscle deformation that is readily observable via ultrasound,
as shown in Fig. 2. We also showed that the location of
maximal change in biceps cross-sectional area under loading
is relatively robust to shifts in elbow angle, suggesting that a
well-placed stationary ultrasound probe could generate mus-
cle force measurements that are robust to configuration. We
are now working to develop and validate low-dimensional
deformation models and to speed up the tissue segmentation
process using both semi-automated image registration [7] and
fully-automated neural networks [8].

IV. CONCLUSION & FUTURE DIRECTIONS

Underlying our exploration of novel muscle activation
measures is the idea that better system identification of
musculoskeletal dynamics will lead to more capable assistive
device control schemes. While some contend that black box
models of human intent are sufficient for control signal
extraction — and, indeed, many of the most capable current
devices rely on such models — we argue that grounding
observed activation signals in biological mechanisms will
enhance not only physics-based control schemes, but black
box models as well. An AMG study, for example, could
illuminate the trade-off between increased motor unit firing
rate and fiber recruitment, allowing for better interpretation
(and thus neural network feature design) of the corresponding
sEMG signal. Similarly, deformation analysis could inform
the choice of sensor location during ultrasound-based gesture
classification. Ultimately, we aim to use these technologies
to enhance our understanding of the human musculoskeletal
system and its own internal control strategies, allowing for
the design of more capable assistive device control schemes.
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