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Abstract— Surface electromyography is currently the sensing
modality of choice for control of biosignal-driven prostheses
and exoskeletons; however, the sensor’s noisy and aggregate
nature inhibits collection of distinguishable signal streams to
robustly manipulate multiple device degrees of freedom (DoF).
We here explore 2D B-mode ultrasound as an alternative source
of muscle activation data (namely, muscle deformation) that
can be more precisely localized, allowing for the theoretical
collection of multiple naturally-varying signals that could be
used to control high-DoF assistive devices.

We here present a proof-of-concept study showing a) the
observability of muscle deformation via ultrasound, and b)
novel descriptions of the spatially-varying nature of the signal.
These analyses are accomplished through the study of nine
volumetric scans of the biceps brachii under varied elbow angle
and loading conditions, collected and spatially localized using
an ultrasound scanner and motion capture. We here establish
the feasibility of measuring several force-associated deformation
signals (including muscle cross-sectional area and thickness) via
real-time ultrasound scanning and quantify the spatial variation
of these signals. Additionally, we propose future applications
for both our signal characterizations and the generated muscle
volume data set, including better design of assistive device
sensor locations and validation of existing muscle deformation
models.†

I. INTRODUCTION

Although there exist a wide variety of mechanically-
sophisticated upper-limb prostheses and exoskeletons, none
are able to truly replicate the functionality of the intact
human arm in terms of movement precision and functional
flexibility. This is largely because controlling such a device
requires the robust manipulation of a prohibitively large num-
ber of control signals; a fully biomimetic arm exoskeleton,
for example, would need to not only actuate the 34 kinematic
degrees of freedom (DoF) of the arm and hand, but modulate
the torque applied at each joint to allow for varying levels
of output force. Indeed, the true degrees of freedom of the
human arm are better described in terms of its actuators
— more than 30 muscle groups, which can be actuated
synergistically or independently to modulate both kinematic
configuration and joint stiffness, each of which consists
of hundreds of thousands of muscle fibers and billions of
sarcomeres.
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Requiring an assistive device user to learn to reliably
manipulate even a few disjoint control signals, often under
diminished physical capacity, is largely infeasible. Instead,
device designers rely on the use of biological control signals
— most commonly, surface electromyography, or sEMG —
to measure muscle activation that users are already practiced
at modulating. This signal is then integrated into the device
control scheme in a manner that (ideally) allows for more
intuitive control.

At the same time, sEMG — a measure of the electrical
signals sent by the neurological system to initiate contraction,
which are then amplified to observable levels within the
muscle — provides an aggregate, noisy signal that varies
greatly with even small shifts in sensor placement. As a
result, the vast majority of sEMG-driven devices allow for
the control of only a single DoF, using the signal differential
between agonist and antagonist muscles to modulate the
configuration of a single joint or closure of a grasp [1] or
relying entirely on deep learning classification techniques
[2].

Due to its aggregate nature and lack of robustness, sEMG
cannot be used to acquire the kind of localized muscle activa-
tion data necessary to allow for intuitive control of high-DoF
assistive devices. While its use is all but ubiquitous, sEMG is
not the only modality capable of sensing muscle state — nor
is the electrical signal it measures the only measure of muscle
activation. In this paper, we examine muscle deformation as
an alternative measure of muscle activation and explore the
feasibility of measuring this deformation via 2D brightness
mode (B-mode) ultrasound.

Muscle deformation is known to be observable and corre-
lated with output force. In general, active muscle contraction
causes the constituent fibers to shorten, and the muscle
expands in other dimensions such that a constant volume
is maintained, stretching the surrounding fascia and aponeu-
roses both parallel and perpendicular to the line of action [3].
However, similar deformation also occurs under changes in
kinematic configuration, as muscles are passively stretched to
accommodate new distances between their attachment points
and deformed by interactions with the surrounding tissues.
A framework that uses muscle deformation changes as a
measure of force output must therefore account for these
configuration-associated deformation changes. However, the
manner in which these deformations interact remains poorly
understood, due to both the difficulty of formulating and
appropriately fitting high-DoF deformation models and the
lack of data that would allow for model validation.

In this study, we seek to explicitly measure and character-
ize both force- and configuration-associated muscle deforma-
tion by examining volumetric changes in the biceps brachii



across multiple elbow flexion angles and loading conditions.
In order to extract these volumetric values under each con-
dition, we collect a dense data set of B-mode ultrasound
scans along the anterior surface of the arm, each of which
is spatially localized via calibration of the marker-tagged
ultrasound probe with an active motion capture system.
These scans are then used to build a 3D intensity map within
which muscle fascia can be readily observed, thus allowing
for segmentation of the complete biceps brachii volume. The
resulting volumetric data are then examined spatially along
the length of the arm and in relation to scans under different
kinematic and loading conditions as a preliminary study of
the two types of deformation and the differences between
them.

This paper presents the following novel contributions:
• a set of volumetric data of the biceps brachii and other

elbow flexors under factorial elbow flexion angles and
loading conditions, to allow for the first-ever separable
analysis of force- and configuration-associated muscle
deformation of the same subject; and

• a proof-of-concept study confirming the ready observa-
tion of both force- and configuration-associated defor-
mation of the biceps brachii and a characterization of
this deformation along the length of the arm.

The two contributions above permit us to conjecture promis-
ing locations from which to extract an elbow flexion con-
trol signal from a single time-varying ultrasound scan, an
observation with ready applications in the prosthesis design
community. Furthermore, the localized nature of the ultra-
sound signal means that such scans could be used to observe
multiple muscle groups simultaneously and individually —
a step toward the development of control schemes for high-
DoF biomimetic assistive devices.

II. RELATED WORK

While the study of muscle deformation spans a number
of disciplines, from computer animation to biophysics, there
exist few macro-scale models relevant to assistive device
control, and fewer still are (even cursorily) validated with
experimental data. Within the field of computer graphics, a
number of algorithms exist to generate plausible muscle de-
formations given a virtual model’s kinematic configuration,
dynamics, and/or skin surface deformation [4]–[7], but these
algorithms are generally evaluated on their output’s visual
appeal rather than a physiological or data-driven error metric.
Although some such models are rooted in biomechanical
data and are intended for real-world medical applications [7],
they largely ignore muscles’ fundamental nature as actuators,
instead treating them as passive elements whose deformation
is purely a function of configuration and applied external
force. Lastly, most of these models rely on finite element
analysis, which makes them too computationally intensive
for direct application to a real-time control scheme.

At the other end of the muscle deformation modeling spec-
trum are micro- and mezzo-scale analyses of (one to a few)
individual muscle fibers [8], [9]. While these models offer
significant insight into the biological sources of deformation,
they are not readily extensible to macro-scale analysis. In-
deed, there is significant evidence not only that fibers behave

quite differently in vivo and in isolation, but that passive
tissues like tendons and aponeuroses significantly impact
the deformation behavior of the muscle-tendon unit when
modeled at this level of detail [10]. This evidence makes it
difficult or impossible to conjecture how deformations scale
across model resolution.

Despite this dearth of models, deformation has been
employed as an assistive device control signal, using nonin-
vasive sensing modalities like force myography (FMG) [11]
and tactile myography (TMG) [12] to measure shape and
force changes at the surface of the skin. These methods show
great promise in augmenting existing sEMG technology but
cannot yield insight into the complex deformation relation-
ships between deep and surface muscles that characterize
many joints’ actuation. Elbow joint flexion, for example, is
generated not only by the biceps brachii and brachioradialis,
both surface muscles, but also by the (deep) brachialis.

While commercial ultrasound-driven assistive devices are
not yet available, diverse studies have demonstrated the use
of B-mode ultrasound to classify hand motions [13] and
measure a wide variety of muscle architectural parameters,
including muscle thickness, pennation angle, and fascicle
length [14]. A number of studies have specifically targeted
muscle thickness, both as a feasible signal for prosthesis
control [15] and as a measure of muscle activation (as cor-
related with EMG) [16], [17] and fatigue [18]. Additionally,
wearable 1D amplitude mode (A-mode) ultrasonic sensors —
which could potentially be applied to acquire a single muscle
thickness measurement — have been used to continually
monitor the mechanical properties of plantar soft tissue in
diabetic patients [19] and knee torque [20] and are much
closer to commercial integration with assistive devices than
2D B-mode scanners.

B-mode ultrasound — and, as the technology evolves, A-
mode ultrasound — is thus a promising sensing modality
for the acquisition of muscle deformation data, both statically
(during the collection of morphological data) and as a source
of real-time control signals to drive assistive devices. In this
study, we examine the use of ultrasound in each manner,
first gathering static volumetric data of the muscles about
the elbow under multiple conditions, then examining the
spatial distribution of muscle deformation along the arm to
draw conjectures about promising locations from which to
measure an assistive device control signal. In performing
these two analyses, we hope to a) augment existing studies
of ultrasound-measured muscle deformation by providing a
more complete understanding of the signals observed, and b)
inform new muscle deformation studies, both by character-
izing where deformation associated with varying kinematic
configuration and load conditions is most observable and by
providing a data set that allows for further domain-specific
study of the topic.

III. VOLUMETRIC DATA COLLECTION

Volumetric muscle data were collected from the elbow
flexors of a single subject under three kinematic configu-
rations (i.e., elbow angles) and three loading conditions in
a full factorial manner, with factors and levels as listed in
Table I. The deformation measurements listed were then



TABLE I
VOLUMETRIC DATA COLLECTION CONDITIONS & DEFORMATION ANALYSES

Manipulated Factors Levels* Deformation Measurements Analyses

θ elbow flexion angle 0◦, 30◦, 60◦, 90◦ CSAθ,LC(x) muscle cross-sectional area variation in x
Tθ,LC(x) muscle thickness maximum value

LC elbow load condition fully supported (FS), Eθ,LC(x) eccentricity of muscle cross-section x loc. of maximum value
gravity compensation (GC), (at dist. x from muscle origin) quadratic regression in x
under load of 227g (LF),
under load of 727g (MF), ∆CSAθ,LC(x) CSAθ,LC(x)−CSAθ,FS(x)

under load of 954g (HF) ∆Tθ,LC(x) Tθ,LC(x)−Tθ,FS(x)

*Italicized values denote conditions for which raw ultrasound data were collected but for which volumetric data reconstruction has not yet been completed;
these scans will be used in future analysis and validation of the results included here. Note that “fully supported” (FS) trials occurred while the arm was
fully supported by the experimental jig (i.e., to measure “pure” kinematic deformation), while the “gravity compensation” (GC) trials occurred while the
arm was unsupported but unloaded (i.e., the elbow flexors performed gravity compensation for the arm’s mass, but nothing more).

extracted from the segmented biceps brachii of each of the
nine resulting scans and analyzed along the axis of the
humerus (hereafter denoted x). Selected results of the listed
analyses are discussed in Section IV.

We here provide a detailed description of the experimental
procedures used to collect the raw ultrasound data, recon-
struct the spatial location of each ultrasound scan, extract
the relevant muscle volumes and bone surfaces, and process
the volumes into the deformation measurements used in our
analyses. While we have here chosen a set of exploratory
analyses that are relevant to the choice and localization of
control signals for assistive devices, the volumetric data we
reconstruct admits a wide range of biometric analyses and
has been made available on the Human Assistive Robotic
Technologies Lab website (hart.berkeley.edu) to per-
mit further exploration.

A. Subject Biometric Data & Consent
Data were collected from the right arm of a male subject,

age 25, of mass 55kg and height 1.6m. Because the manual
extraction of muscle volumes presents a prohibitively time-
consuming bottleneck, as described in Section III-C, only
data from this single subject are presented here. Data were
collected from the right arms of two additional subjects
(female, age 24, mass 70kg, height 1.8m and male, age 21,
mass 66kg, height 1.6m) for future analysis and publication.
All subjects were healthy and right-handed.

The study protocol was approved by the University of
California Institutional Review Board for human protection
and privacy, under Protocol ID 2016-01-8261. Each subject
was first informed of the experimental procedure and written
informed consent was obtained.

B. Data Collection
During data collection, the test subject lay supine and

relaxed, with legs comfortably extended and right arm ex-
tended laterally from the body at a 90◦ shoulder abduction
angle. The forearm was fully supinated, with the upper
arm supported at the distal end of the humerus, as shown
in Figure 1. Scans were then collected with the subject’s
elbow held statically at each of the three angle values listed

Fig. 1. Experimental setup for the collection of full-arm upper-limb
morphology data under multiple elbow angles and loading conditions,
enabling a factorial study of the sources of muscle deformation (shown
here at a 60◦ angle of elbow flexion under HF (left) and FS (right)
loading conditions). Setup includes ultrasound scanner (a) and probe (b)
(with attached active motion capture markers (c) used for spatial tracking);
weight bands (d) used to load the elbow flexors (during LF and HF trials);
mechanical jig (e) used to support the elbow (during all trials, left) and the
forearm (during FS trials, right); and the phantom devices (f) required to
calibrate the coordinate transformation between the motion capture world
frame and the measured ultrasound scans.

in Table I (as measured from from full extension) under
three separate loading conditions (fully supported by a jig
at the wrist and unsupported while lifting wrist weights
of comparatively low and high mass), for a total of nine
trials. Angle conditions were selected to allow for both
observable kinematic-associated muscle deformation and free
manipulation of the ultrasound probe around the elbow joint
(the latter of which precluded scans at larger elbow flexion
angles). Similarly, loading masses were selected to allow for
observable force-associated muscle deformation while not
being so heavy that subjects were unable to remain still
during the (several minute) duration of the scan. During
unsupported weight-bearing trials, subjects were asked to
maintain contact between a designated point on the anterior
surface of the wrist and a guide bar in order to maintain
constant elbow flexion angles both within and between trials.
Loading weights were attached at the wrist to avoid the



confounding activation of wrist and finger flexors that would
occur if weights were held in the hand.

During each trial, ultrasound images were collected using
a portable commercial ultrasound scanner (eZono 4000,
eZono AG, Jena, Germany) equipped with a 3-12MHz linear
transducer (L3-12 NGS, eZono AG, Jena, Germany). The
machine was configured to collect B-mode data at a depth
of 4cm, with a 3.8cm transducer footprint.

To collect full volumetric data of the anterior surface of
the arm, the ultrasound probe was held perpendicular to
the subject’s skin and swept by a practiced operator along
the arm’s surface, using the minimum pressure necessary
to maintain probe contact in order to deform the tissue
as little as possible. To scan the full anterior surface of
the arm (from medial to lateral edges) required multiple
parallel sweeps of the probe; to ensure that scans were
sufficiently evenly distributed in space, the subject’s arm
was marked in 1cm increments using a non-toxic marker,
and the operator maintained a metronome-guided constant
rate of approximately 80cm/min when sweeping proximally-
to-distally along the arm, deviating as necessary near the
shoulder and elbow joints to acquire sufficient numbers
of scans. (Note that the volumetric reconstruction of these
scans used here does not impose specific requirements on
the spatial distribution of data, so this process need not be
completely rigorous and simply improves signal quality.)

To permit volumetric reconstruction of the ultrasound
data, the spatial location of the probe was tracked from
a set of four optical markers using a PhaseSpace active
motion capture system (PhaseSpace Inc., San Leandro, CA,
USA). Prior to data collection, the transformation between
the ultrasound probe location and the measured image was
calculated (both spatially and temporally) using the open-
source PLUS calibration toolkit [21], with a reported probe
calibration error of 1.6mm. During data collection, data were
streamed to an external computer at a rate of 30fps through
an OpenIGTLink server [22] and later reconstructed using
the volume reconstruction application provided by the PLUS
toolkit.

The full experimental setup is shown in Figure 1, and
representative volumetric data can be seen in Figure 2 as the
spatial intensity map from which volumes were manually
segmented.

C. Muscle Volume Extraction

A complete study of muscle deformation about the elbow
would require characterization of all muscles that actuate
the joint, including flexors and extensors, as well as the
muscles of the surrounding joints that contact and collide
with those above. While this study includes preliminary
segmentation results of all elbow flexors (biceps brachii,
brachialis, and brachioradialis), we report primarily on the
observed deformation of the biceps brachii, which can be
most cleanly observed in all nine scans examined and — as
a surface muscle — is a natural target for eventual use in
assistive device control signals. While the brachialis muscle
is also known to exert significant force during elbow flexion,
the fact that its belly is largely centered over the elbow joint
itself makes deformation difficult to observe and characterize

(unlike the biceps brachii, whose mass is concentrated along
the upper arm). The brachioradialis was not prioritized for
scanning, as it primarily impacts elbow flexion when the
wrist is pronated, and is not always completely visible within
the frame of our scans.

For initial segmentation, we selected the scan collected
at a 30◦ elbow flexion angle while fully supported, as this
condition represents a natural baseline for all subsequent
conditions that increase angle and loading. Muscle volumes
for the biceps brachii, brachialis, and brachioradialis were
observed and manually annotated in the axial, coronal, and
sagittal planes of the scan using ITK-SNAP [23], as were the
anterior surfaces of the humerus, ulna, and radius (in order
to establish the locations of both muscle attachment points
and the elbow joint itself).

The full manual segmentation of this initial scan represents
a bottleneck in the analysis process: it took two operators tens
of hours to complete the full segmentation at the desired
level of precision. To segment additional scans, a manual
rigid transformation was performed in 3D Slicer [24] to
align the segmentation of the initial scan with each of the
remaining eight volumetric scans, such that the humerus of
each scan perfectly overlapped. These segmentations were
then manually modified in ITK-SNAP to include the new
muscle deformation observed and any other necessary clean-
up (a process that took several hours per scan rather than
several days).

In addition to decreasing the required segmentation time,
this process of modifying an existing segmentation instead
of segmenting from scratch mitigated the chances of the
human segmenter encountering areas of scan ambiguity (e.g.,
wide muscle fascia, bone shadow, poor signal quality around
the elbow joint) and making different choices across scans,
generating a deformation signal that could be erroneously
attributed to configuration- or force-associated deformation.
To further reduce the prevalence of these types of errors,
all nine scans were manually aligned (again using humerus
alignment as ground truth) and were simultaneously exam-
ined by the same segmenter, slice by slice, to ensure that
segmentation ambiguities were resolved consistently across
scans.

The final result of this segmentation process is a set of
nine aligned upper-arm scans at the factorially-varying elbow
flexion and loading conditions described above, as shown in
Figure 2. These scans have been made available for public
use and are here used to characterize observable muscle
deformation signals.

D. Extraction of Deformation Signals

Because we ultimately hope to employ muscle deforma-
tion signals in assistive device control, we seek to observe
signals that are a) well-correlated with the force output of the
muscle, b) measurable from a single ultrasound data stream,
and c) robust to variation in sensor location. With these
characteristics in mind, we here extract the values of the
following three signals (noted spatially on a representative
scan in Figure 3) at each cross section along the length of
the arm.
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Fig. 2. Force-associated deformation of the (magenta) biceps brachii and surrounding muscles (turquoise brachialis, purple brachioradialis, and gray
deltoid) under multiple loading conditions, as segmented from volumetric reconstruction of ultrasound data. Locations of the coronal cross-sectional scans
shown are noted by lines transecting the associated sagittal scan in each inset. Volumetric changes across both kinematic configurations and loading
conditions are readily observable, confirming the necessity of modeling both signal sources when employing muscle deformation as a device control signal.

1) Muscle cross-sectional area (CSA): A large body of
research [25] suggests a complex but positively correlated
relationship between force capability and CSA; we here
explore whether changes in this CSA are also indicative of
force output. We define CSA as the area of the muscle cross
section sliced perpendicular to the length of the humerus.

2) Muscle thickness: Muscle thickness is a promising
assistive device control signal, as there is strong evidence
that it can be measured in real time from B-mode (and
even A-mode) ultrasound data [15]. While it is not at all
obvious how to define this value spatially across muscle cross

sections — since defining it relative to any single axis along
the humerus cannot accommodate the nonlinear deviation
of the muscle along its length — we here define thickness
as the mean thickness of the muscle measured from the
anterior arm surface down toward the humerus within a 1cm
window surrounding the centroid of the measured muscle
cross section.

3) Eccentricity of muscle cross section: We here define
the eccentricity of the muscle cross section as the condition
number of the covariance matrix of each muscle cross section
when treated as spatially-varying point data. Intuitively, the



Fig. 3. Visualization of metrics used in spatial deformation analy-
sis on a single representative coronal cross section. Cross-sectional area
CSAθ,LC(x) was directly extracted from the segmented volumetric biceps
volume, and thickness Tθ,LC(x) was computed as the mean of the measure
shown about a 1cm region surrounding the centroid of the computed area.
Eccentricity Eθ,LC(x) was computed as the major-to-minor-axis ratio of
the best fit ellipse to the cross-sectional spatial data values in the least-
squares sense. The data collected suggest that CSA changes are a robustly
observable measure of muscle activation, and that thickness measurements,
when combined with a model of eccentricity, could be used to estimate the
CSA signal using cheaper A-mode ultrasound sensors.

condition number represents the ratio of the major to minor
axes of the best-fit ellipse to the cross-sectional area and is
thus a measure of muscle eccentricity along the length of the
arm.

IV. DEFORMATION ANALYSIS

We here present preliminary observations on biceps brachii
muscle deformation as measured by the three signals defined
and extracted above. Note that there are no obvious a
priori assumptions on how these values relate specifically
to kinematic- or force-associated muscle deformation, or
whether they can be used to discriminate between the two.
To our knowledge, no literature exists on the topic, as the
two types of deformation are typically studied in isolation.

A. Spatial Variation in Muscle CSA, Thickness, & Eccentric-
ity

The top and middle plots of Figure 4 show raw CSA
and thickness data for the biceps brachii under the fully-
supported condition at all three angles examined, as well
as the best-fit quadratic regressor for the data (in the least-
squares sense), from the proximal extremum of the observ-
able biceps volume to the location of the elbow (i.e., where
the humerus meets the radius and the ulna).

The compression of the muscle with increased angle
is observable in the width of the best-fit quadratic CSA
functions: the model for the 30◦ condition is widest, and
that of the 90◦ condition is narrowest. At the same time,
while intuition might indicate that the location of maximum
CSA and thickness value drifts from distal to proximal with
increasing angle, we observe no such change under the
angle conditions tested. Instead, the fitted quadratic functions
consistently peak at a distance of 7.4cm (46%) from the
proximal end of the muscle across all angle conditions (all
within a range of 0.3cm), and no obvious deviation from this
mean is observable under load.

Fig. 4. Variation in cross-sectional area (top), thickness (middle), and
eccentricity (bottom) along the length of the biceps brachii from shoulder
to elbow, under multiple elbow flexion angles with the forearm fully
supported. The location of maximum CSA/thickness (as measured from
the corresponding quadratic regression models shown in overlay) was not
shown to vary with angle, but the changes in width of the fitted CSA
quadratics reflect the compression of the muscle as elbow flexion increases, a
preliminary and intuitive insight that suggests that building low-dimensional
predictive models of CSA change may be possible. The steep increase in
eccentricity near the muscle’s ends is reflected in the cross-sectional images
shown in Figure 2, and the consistent shape of the eccentricity map across
all tested conditions indicates that a spatial eccentricity map could be of use
in developing a predictive model of muscle CSA from 1D thickness data.

The narrowing and flattening of the biceps near each
end of the muscle is reflected in the eccentricity values
shown in the final plot of Figure 4; this trend is also
reflected qualitatively in the scan cross sections shown in
Figure 2. While the raw eccentricity values do not present a
straightforward understanding of spatial muscle deformation
in isolation, they can be combined with muscle thickness —
which can be measured with cheaper, simpler sensors like
A-mode ultrasound — to generate an approximate model of
muscle CSA. Once appropriately fitted to the data, such a
model could form the basis of a control scheme driven by
muscle thickness data, and the consistent overall shape of the
eccentricity curve under all tested conditions indicates that
the extraction of such a model may be possible.



Fig. 5. Spatial variation of change in biceps brachii cross-sectional area
(CSA) from that of the fully-supported volume under low (dashed) and high
(solid) loading conditions. Significant variation is consistently observed in
a range centered approximately 2.6cm distal from the location of maximum
absolute CSA and is larger under higher loading at each configuration. These
observed ∆CSA values thus indicate a candidate location from which to
extract a spatially robust assistive device control signal.

B. Muscle CSA & Thickness Variation Across Loading Con-
ditions

Figure 5 shows the spatially-varying change in muscle
CSA under the two loading conditions examined, defined as
the CSA under loading less the CSA while fully supported at
each spatial location. The observed changes peak consistently
across configurations and loading conditions at a distance of
approximately 10cm from the proximal end of the muscle,
roughly 63% of the way down the muscle and 2.6cm (16%)
distal from the peak of the absolute maximum CSA shown in
Figure 4. Over all, substantial deformation — up to 5.9cm2,
or 54% of the corresponding unloaded CSA value — is
observed.

While the magnitudes of this CSA change are not com-
parable across configurations, as the same wrist weights
induced different moments at each angle, greater changes
in CSA are observed for larger loads than those of smaller
loads at all angle conditions within a considerable region

(8.8cm, or 55% of the total examined biceps length, roughly
centered about the location of maximum CSA change, with
much larger regions in the 30◦ and 60◦ cases). This suggests
that an assistive device control signal could be gathered from
this location and remain reasonably robust under moderate
levels of sensor movement.

Although changes in muscle thickness across loading con-
ditions were similarly defined and examined, the data proved
extremely noisy, and observed signal changes were small
(on the order of 0.4cm) and difficult to characterize, with
no discernible peak or trend across loading conditions. This
suggests that the thickness signal as defined neglects sub-
stantial muscle deformation in the unexamined dimension,
and may therefore be most useful in concert with a model of
muscle eccentricity, as described above. We therefore plan
to undertake a more thorough study these models, and also
of the most effective ways to gather a 1D muscle thickness
signal (e.g., by considering different potential positions for
an ultrasound sensor about the coronal plane of the arm) in
future publications.

V. CONCLUSIONS, REMAINING CHALLENGES, &
FUTURE WORK

The volumetric muscle data collected and examined in this
study represent an excellent platform with which to verify
the wide variety of existing muscle deformation models
and quickly test the feasibility of new ones. At the same
time, making assertions about the conceptual extensibility of
the conjectures above — or even their widespread validity
among individuals — will require study of a much larger
subject cohort. While we plan to continue segmentation
and analysis of our existing three-subject scans, substantial
morphological variation across individuals makes it likely
that a robust understanding of muscle deformation signals
will require many more subjects of much more varied
demographics.

To permit such a larger study, we are currently working
to address the segmentation bottleneck — namely, the tens
of hours required to segment an initial subject scan —
by exploring non-rigid registration techniques to allow the
mapping of one subject’s muscles onto the scan of another.
A large body of research relates to this registration problem
as it pertains to magnetic resonance imaging (MRI); we
are currently exploring ways to both apply these existing
techniques to ultrasound data and to undertake similar mor-
phological studies via MRI. As our data set grows, we
are also examining ways to employ convolutional neural
networks like the U-Net [26] to perform this step in a fully
automated manner.

From the perspective of a prosthesis user, an ideal assistive
device would allow for the independent control of force
and joint angle without requiring explicit behavioral changes
from the user; with this in mind, we hope to use this
research framework to build a nuanced understanding of
configuration- and force-related muscle deformation and the
interactions between the two. Due to the complex sliding
and contact dynamics involved, the configuration-related
deformation signal is likely to require an especially complex
model; at the same time, it may prove less necessary to



use this model explicitly during real-time device control,
as a number of sensors already exist (including motion
capture, electrogoniometers, and inertial measurement units)
that can measure real-time kinematics. The true power of the
framework we describe will be in the extraction of force-
related deformation — which, given an offline model of
configuration-associated deformation, may admit a clean and
low-dimensional formulation, allowing for real-time, high-
dimensional measurement of human dynamics.

Ultimately, the field of muscle deformation modeling
could greatly benefit from its own version of the Hill model
[27] — a ubiquitous, cleanly-parameterized formulation that
could be applied to a wide variety of musculoskeletal mod-
eling endeavors. While the creation of such a model will
doubtless require years of rigorous system identification,
both in vivo and in vitro, this paper represents a first step
toward providing the type of data required for its validation,
in addition to our exploration of ultrasound-based assistive
device control signals.

While significant challenges remain in the translation of
this work to predictive deformation models and robust con-
trol signals, we have here shown that both configuration- and
force-associated muscle deformation are readily observable
and can likely be used effectively in concert with other sen-
sors to surpass existing assistive device control capabilities.
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