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• Intuitive control of high-DoF assistive devices remains an open 
problem

• Control systems using surface EMG are limited by the sensor's 
noisy and aggregate nature and by poor overall understanding of 
neurological motor control [1]

• Muscle deformation represents an alternative control signal that 
can be measured in a highly localized manner via ultrasound to 
allow for robust extraction of multiple independent control signals

• Substantial muscle deformation occurs 
during both force exertion and changes 
in kinematic configuration, complicating 
model generation

• No data exists with which to study these 
deformation signal sources independently, 
but both must be considered to use  
deformation as a control signal

• Generate factorial set of volumetric scans of 
the arm under multiple elbow angles and loading 
conditions to allow for separable analysis of force- 
and configuration-associated muscle deformation

• Examine volumetric changes along the full length of 
the arm to assess potential device control signals, 
including muscle cross-sectional area (CSA), thickness 
(T ), and eccentricity (E )

• Data show force- and configuration-associated deformation of 
similar magnitudes, confirming the necessity of modeling both 
signal sources when using the deformation signal for device control

• Segmentation of tissue structures remains a major bottleneck → 
working to speed up process using semi-automated image registration 
techniques [6] and fully-automated neural networks [7]

• Ultimately, hope to use multiple deformation signals simultaneously 
for high-DoF assistive device control

The authors acknowledge the aid of Dr. Gregorij Kurillo in system development and data collection.

This work was supported by the NSF National Robotics Initiative (award no. 81774), Siemens Healthcare (85993), and the 
NSF Graduate Research Fellowship Program.

[1] J.-Y. Hogrel, “Clinical applications of surface electromyography in neuromuscular disorders,” Neurophysiologie Clinique/Clinical Neurophysiology, vol. 35, no. 2-3, pp. 59–71, 2005.
[2] A. Lasso et al., “PLUS: Open-source toolkit for ultrasound-guided intervention systems,” IEEE Transactions on Biomedical Engineering, pp. 2527–2537, Oct 2014.
[3] A. L. Tamas Ungi and G. Fichtinger, “Open-source platforms for navigated image-guided interventions,” Medical Image Analysis, vol. 33, pp. 181–186, Oct 2016.
[4] A. Fedorov et al., “3D Slicer as an image computing platform for the Quantitative Imaging Network,” Magnetic Resonance Imaging, vol. 30, pp. 1323–1341, Nov 2012.
[5] P. A. Yushkevich et al., “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” Neuroimage, vol. 31, no. 3, pp. 1116–1128, 2006.
[6] K. Marstal et al., “SimpleElastix: A user-friendly, multi-lingual library for medical image registration,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 574–582, 

IEEE, 2016.
[7] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted 

Intervention, pp. 234–241, Springer, 2015.

Finalized Tissue Volumes

FS
“Fully Supported”

LF
“Low Force”

HF
“High Force”

30° 30° 30°

60° 60°
60°

90°90°90°{
Raw Data Collection

via Ultrasound & Motion 
Capture

Volumetric Reconstruction
via PLUS Toolkit [2]–[4]

Tissue Segmentation
in ITK-SNAP [5]
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The location of maximal change in CSA under loading is approximately consistent across elbow angles, 
suggesting an optimal location from which to extract a control signal using a static ultrasound probe.

Changes in width of the 
fitted CSA quadratic reflect 
compression of the muscle 
as elbow angle increases.
In the future, a model of 
eccentricity could be used 
to predict CSA from one-
dimensional thickness data.
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Download the full data set at 
hart.berkeley.edu/datasets

Deformation Characterization


