Beyond Surface Electromyography: Acoustic Myography and Ultrasound Imaging for Real-Time Muscle Force Inference Laura A. Hallock and Ruzena Bajcsy · University of California, Berkeley

Problem	Solution	Contributions
 Intuitive control of high-degree-of-freedom (DoF) assistive devices remains an open problem 	Measure in vivo mechanical signals (vibration and deformation) associated with muscle contraction to build muscle dynamics models without requiring knowledge of motor control strategies	 Novel model relating real-time muscle force to muscle vibration, as measured
 Replicating human dexterity requires understanding and mimicry of complex muscle synergies, including agonist-antagonist relationships Control systems using industry-standard surface electromyography (sEMG) are limited by the sensor's noisy and aggregate nature and by poor overall understanding of neurological motor control [1] 		 Novel data set allowing first-ever relation of muscle force to muscle deformation in the presence of changing kinematic configuration, as measured via ultrasound and motion capture (P2)

P1: Aggregate Muscle Force via Vibration

P2: Localized Muscle Force via Deformation

Project Objective

Predict in vivo muscle force from muscle vibration caused by contraction using acoustic myography (AMG) for use in real-time control schemes

Muscle Force Model

We model individual muscle output force F_m as

for some $\alpha > 0$, as it is conjectured that $A \propto n$ and that $\nu \propto \bar{F}_f$ [2].

We perform preliminary validation analysis using the simplified sagittal model of the elbow shown here.

Preliminary Results

Preliminary single-subject data support the following two hypotheses consistent with the model above: 0.16

(1) Under relaxed conditions, $A_1\nu_1$ of the elbow flexor(s) correlates positively with output torque τ

$$\begin{bmatrix} 0.16 \\ 0.14 \\ s^{-1} & 0.12 \end{bmatrix} r = 0.9, p < 10^{-6}$$

 $F_{m2} = \alpha_2 A_2 \nu_2$

Project Objective

Build low-dimensional models relating muscle deformation to output force for use in real-time control schemes, robust to changes in kinematic configuration

<section-header>

Raw Data CollectionVoluvia Ultrasound &viMotion CaptureVi

Volumetric Reconstruction via PLUS Toolkit [3]–[5]

Tissue Segmentation in ITK-SNAP [6]

(2) For a given τ , under varying elbow stiffness, $A_1\nu_1$ of the elbow flexor(s) correlates positively with $A_2\nu_2$ of the elbow extensor(s) to maintain constant output torque

 $F_{m1} = \alpha_1 A_1 \nu_1$

Current / Future Work

- Fit parameters α to enable output force inference
- Investigate temporal and spatial resolution of AMG signal
- Expand resultant models to **complex multi-muscle systems**
- Incorporate models into multi-DoF device control schemes

Current / Future Work

- Extract low-dimensional models of deformation to enable **real-time force inference**
- Automate segmentation of tissue structures (current computational bottleneck) by leveraging image registration techniques [8] and neural networks [9]

Download the full data set at hart.berkeley.edu/datasets

Acknowledgments / Sponsors

The authors acknowledge the aid of **Dr. Gregorij Kurillo** and **Akira Kato** in ultrasound system development and data collection.

References

- [1]J.-Y. Hogrel, "Clinical applications of surface electromyography in neuromuscular disorders," *Neurophysiologie Clinique/Clinical Neurophysiology*, vol. 35, no. 2-3, pp. 59–71, 2005.
- [2] A. P. Harrison, "A more precise, repeatable and diagnostic alternative to surface electromyography–an appraisal of the clinical utility of acoustic myography," *Clinical Physiology and Functional Imaging*, vol. 38, no. 2, pp. 312–325, 2018.

1341, Nov 2012.

- [6] P. A. Yushkevich et al., "User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability," *Neuroimage*, vol. 31, no. 3, pp. 1116–1128, 2006.
- [7] L. A. Hallock, A. Kato, and R. Bajcsy, "Empirical quantification and modeling of

This work was supported by the **NSF National Robotics Initiative** (award no. 81774), **Siemens Healthcare** (85993), and the **NSF Graduate Research**

[3] A. Lasso et al., "PLUS: Open-source toolkit for ultrasound-guided intervention systems," *IEEE Transactions on Biomedical Engineering*, pp. 2527–2537, Oct 2014.
[4] A. L. Tamas Ungi and G. Fichtinger, "Open-source platforms for navigated interventions," *Medical Image Analysis*, vol. 33, pp. 181–186, Oct 2016.

[5] A. Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network," *Magnetic Resonance Imaging*, vol. 30, pp. 1323– muscle deformation: Toward ultrasound-driven assistive device control," in *IEEE International Conference on Robotics and Automation (ICRA)*, IEEE, 2018.
[8] K. Marstal et al., "SimpleElastix: A user-friendly, multi-lingual library for medical image registration," in *IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 574–582, IEEE, 2016.

[9] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 234–241, Springer, 2015.