
Preliminary Results

Muscle Force Model

Beyond Surface Electromyography: 
Acoustic Myography and Ultrasound Imaging 
for Real-Time Muscle Force Inference

Problem Solution Contributions
• Intuitive control of high-degree-of-freedom (DoF) assistive devices 

remains an open problem
• Replicating human dexterity requires understanding and mimicry of 

complex muscle synergies, including agonist-antagonist relationships
• Control systems using industry-standard surface electromyography (sEMG) 

are limited by the sensor's noisy and aggregate nature and by poor overall 
understanding of neurological motor control [1]

Measure in vivo 
mechanical signals 
(vibration and deformation) 
associated with muscle 
contraction to build muscle 
dynamics models without 
requiring knowledge of 
motor control strategies

• Novel model relating real-time muscle 
force to muscle vibration, as measured 
via acoustic myography (AMG) (P1)

• Novel data set allowing first-ever 
relation of muscle force to muscle 
deformation in the presence of changing 
kinematic configuration, as measured via 
ultrasound and motion capture (P2)
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P1: Aggregate Muscle Force via Vibration P2: Localized Muscle Force via Deformation
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Current / Future Work

Project Objective

Muscle Volume Extraction

Preliminary Data & Analysis [7]

Current / Future Work

Predict in vivo muscle force from muscle vibration caused by contraction 
using acoustic myography (AMG) for use in real-time control schemes

Build low-dimensional models relating muscle deformation to output force 
for use in real-time control schemes, robust to changes in kinematic configuration

• Extract low-dimensional models of deformation 
to enable real-time force inference

• Automate segmentation of tissue structures 
(current computational bottleneck) by leveraging 
image registration techniques [8] and neural 
networks [9]
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(1) Under relaxed conditions,             
of the elbow flexor(s) correlates 
positively with output torque

We model individual muscle output force        as

for some           , as it is conjectured that             and 
that              [2].

# activated fibers AMG amplitude

mean fiber force AMG frequency

We perform preliminary validation analysis using the 
simplified sagittal model of the elbow shown here.

Preliminary single-subject data support the following two hypotheses 
consistent with the model above:

(2) For a given   , under varying elbow 
stiffness,           of the elbow flexor(s) 
correlates positively with           of the 
elbow extensor(s) to maintain constant 
output torque

• Fit parameters     to enable output force inference
• Investigate temporal and spatial resolution of AMG signal
• Expand resultant models to complex multi-muscle systems
• Incorporate models into multi-DoF device control schemes

Raw Data Collection
via Ultrasound & 
Motion Capture

Volumetric Reconstruction
via PLUS Toolkit [3]–[5]

Tissue Segmentation
in ITK-SNAP [6]

Changes in width of the fitted CSA 
quadratic reflect compression of the 
muscle as elbow angle increases.

Cross-Sectional 
Area (CSA)

Thickness

Eccentricity

Dist. from Biceps Origin x (cm)

E
θ,

LC
(x

)
T

θ,
LC

(x
) (

cm
)

C
SA

θ,
LC

(x
) (

cm
2 )

Download the full data set at 
hart.berkeley.edu/datasets
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