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MOTIVATION

Creation of descriptive human dynamical modeling framework is hampered by:

* reliance on population-based models that fail to account for variation/pathology

* system complexities at every level of abstraction g
- single muscle force-length-velocity relation is poorly understood
- in vivo, muscles act in aggregate
- non-invasive sensing is limited

OBJECTIVE

Create a musculoskeletal model of the human arm that:

* has appropriate level of abstraction (is as simple as possible while accommodating
dynamically- and medically-relevant pathologies)

* is trainable/customizable using non-invasive sensing

* can be used in an exoskeletal control system using non-invasive, wearable sensing

* has no reliance on literature values or population measures

38 At the same time, kinematics alone
are insufficient to diagnose and treat
musculoskeletal pathologies and cre-
ate assistive devices (e.g., exoskeletons):
dynamics must be modeled.

STATE OF THE ART ASSUMPTIONS APPROACH

Current modeling frameworks are built using:

* cadaver / ex vivo studies (human and animal)

* population measures

* model fitting/optimization w/ additional assumptions
(e.g., gait cycle, optimal energy consumption)

* aggregate “average human” population models (e.g.,
OpenSim [1],AnyBody [2])

Assume ability to measure:
 skeletal kinematics (motion capture, IMU, electrogoniometer)
* morphological parameters
- muscle/tendon/bone volumes, insertion points (ultrasound - dynamic, MRI - static)
- limb link masses (force plates using method in [3])
e contact forces (force plates, force-torque sensors)
* muscle ‘“‘activation” (sEMG - aggregate, dimensionless)
* peripheral signals - blood oxygenation (NIRS), metabolic effort (O, consumption mask)

Develop a modeling framework

informed by

* sensor capability

* kinematic/dynamic parame-
ters of interest

Gamma exoskeleton, developed in the HART Lab.
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PRELIMINARY RESULTS CURRENT/FUTURE WORK

Data: ~400 x 51 —8.3685 To refine the above framework, are currently working to:
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qualitatively reasonable
15 and fits the data well, and the

B angle (theta), rad 1 0 .
e (a,7,0) pairs generated using normalized and filtered EMG, normal- predicted force-length re-
lation is biologically rea-

ized and summed force (taking the max. sample value for each), and
measured angle (within range of optimal angle as defined by [6]) sonable.
* least squares optimization used to recover force-length relation
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Experimental setup. Subject
pressed upward on F/T sensor
mounted to UR5 robot with
varying levels of effort at vary-
ing angles while sEMG data were
gathered from Myo arm bands.
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