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Sensor-Driven Musculoskeletal Dynamic Modeling

Current modeling frameworks are built using:
•	cadaver / ex vivo studies (human and animal)
•	population measures
•	model fitting/optimization w/ additional assumptions 

(e.g., gait cycle, optimal energy consumption) 
•	aggregate “average human” population models (e.g., 

OpenSim [1], AnyBody [2])

Experimental setup. Subject 
pressed upward on F/T sensor 
mounted to UR5 robot with 
varying levels of effort at vary-
ing angles while sEMG data were 
gathered from Myo arm bands.
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Creation of descriptive human dynamical modeling framework is hampered by:
•	reliance on population-based models that fail to account for variation/pathology
•	system complexities at every level of abstraction
	 - single muscle force-length-velocity relation is poorly understood
	 - in vivo, muscles act in aggregate
	 - non-invasive sensing is limited

Human-Assistive Robotic Technologies (HART) Lab, University of California, Berkeley
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Create a musculoskeletal model of the human arm that:
•	has appropriate level of abstraction (is as simple as possible while accommodating 

dynamically- and medically-relevant pathologies)
•	is trainable/customizable using non-invasive sensing
•	can be used in an exoskeletal control system using non-invasive, wearable sensing
•	has no reliance on literature values or population measures

Assume ability to measure:
•	skeletal kinematics (motion capture, IMU, electrogoniometer)
•	morphological parameters
	 - muscle/tendon/bone volumes, insertion points (ultrasound - dynamic, MRI - static)
	 - limb link masses (force plates using method in [3])
•	contact forces (force plates, force-torque sensors)
•	muscle “activation” (sEMG - aggregate, dimensionless)
•	peripheral signals - blood oxygenation (NIRS), metabolic effort (O2 consumption mask)

Develop a modeling framework 
informed by
•	sensor capability
•	kinematic/dynamic parame-

ters of interest

Current/Future Work

At the same time, kinematics alone 
are insufficient to diagnose and treat 
musculoskeletal pathologies and cre-
ate assistive devices (e.g., exoskeletons): 
dynamics must be modeled.

To refine the above framework, are currently working to:
•	incorporate more extensive data: multi-channel EMG, additional sensors for 

better morphological parameter estimation
•	incorporate multiple muscles (extensors and additional flexors)
•	hybridize model (agonist/antagonist w/ different system functions)
•	add muscle dynamics (e.g., Hill model)

To verify system’s validity:
•	condition number of W
•	numerical computation of base pa-

rameters [5]

The generated surface is 
qualitatively reasonable 
and fits the data well, and the 
predicted force-length re-
lation is biologically rea-
sonable.

•	Set morphological parameters to ap-
proximate biceps

•	Assume 2nd-order approx. for force-
length curve [4]:

Data:  ~400 ×

{           }EMG

F/T
for single 
subject

•	            pairs generated using normalized and filtered EMG, normal-
ized and summed force (taking the max. sample value for each), and 
measured angle (within range of optimal angle as defined by [6])

•	least squares optimization used to recover force-length relation

Gamma exoskeleton, developed in the HART Lab.
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Based on morphological model, 
generate            pairs:

Assuming muscle force-length relation

and normalized muscle activation and length

the dynamics relation of each            pair is described by


